The Journal of Membrane Biology

, Volume 197, Issue 1, pp 33–48

Architecture of the Alzheimer’s AβP Ion Channel Pore



We have proposed that the cytotoxic action of Alzheimer’s amyloid beta protein might be initiated by the interaction with the neuronal cell membrane, and subsequent formation of toxic ion channels. Consequently, AβP toxicity can be explained on the basis of harmful ion fluxes across AβP channels. The conformation of AβP in membranes is not known. However, several models suggests that a transmembrane annular polymeric structure is responsible for the ion channel properties of the membrane-bound AβP. To identify that portion of the AβP molecule making up the conducting pore we have hypothesized that the region of the AβP sequence in the vicinity of the hypothetical pore might interact with complementary regions in the adjacent AβP subunits. We have further hypothesized that an interaction by a peptide segment would block AβP conductance. To test this hypothesis we synthesized peptides that encompass the histidine dyad (H-H) previously hypothesized to line the pore. We report here that peptides designed to most closely match the proposed pore are, in fact, the most effective at blocking ion currents through the membrane-incorporated AβP channel. As previously shown for Zn2+ blockade, peptide blockade is also asymmetric. The results also provide additional evidence for the asymmetric insertion of the AβP molecules into lipid membranes, and give support to the concept that rings of histidines line the entry to one side of the AβP pore.


Alzheimer’s disease Amyloid-β-peptide Amyloid beta AβP ion channels Blocker peptides Pore region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arispe, N. 2001Control of the interaction of the Alzheimer’s AβPs and homologous analogues, with lipid membranes.Biophys. J.80135aGoogle Scholar
  2. 2.
    Arispe, N.J., Doh, M. 2003Peptides that block Alzheimer’s AβP ion channels protect cells from AβP toxicity.Biophysical J.8453aGoogle Scholar
  3. 3.
    Arispe, N., Doh, M., De Maio, A. 2002Lipid interactions differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70.Cell Stress and Chaperones7330338PubMedGoogle Scholar
  4. 4.
    Arispe, N., Pollard, H.B., Rojas, E. 1994β-amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer disease.Mol. Cell. Biochem.14019125Google Scholar
  5. 5.
    Arispe, N., Pollard, H.B., Rojas, E. 1996aZn2+ interaction with Alzheimer amyloid β protein calcium channels.Proc. Natl. Acad. Sci. USA9317101715Google Scholar
  6. 6.
    Arispe, N., Rojas, E., Gene, B.R., Wu, L.N.Y., Wuthier, R. 1996bSimilarity in calcium channel activity of annexin V and matrix vesicles in planar lipid bilayers.Biophys. J.7117641775Google Scholar
  7. 7.
    Arispe, N., Rojas, E., Pollard, H.B. 1993aAlzheimer disease amyloid β-protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium.Proc. Natl. Acad. Sci. USA90567571Google Scholar
  8. 8.
    Arispe, N., Rojas, E., Pollard, H.B. 1993bGiant multilevel cation channels formed by Alzheimer disease amyloid β-protein [AβP-(1–40)] in bilayer membranes.Proc. Natl. Acad. Sci. USA901057310577Google Scholar
  9. 9.
    Avdulov, N.A., Cochina, S.V., Igbavboa, U., Warden, C.S., Vassiliev, A.V., Wood, W.G. 1997Lipid binding to amyloid-β-peptide aggregates. Preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids.J. Neurochem.6917461752PubMedGoogle Scholar
  10. 10.
    Barrow, C.J., Yasuda, A., Kenny, P.T.M., Zagorski, M.G. 1992Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra.J. Mol. Biol.22510751093PubMedGoogle Scholar
  11. 11.
    Bathia, R., Lin, H., Lal, R. 2000Fresh and globular amyloid-β- protein induces rapid cellular degeneration. A possible implication for calcium-uptake via AβP-channel.FASEB J.1412331243PubMedGoogle Scholar
  12. 12.
    Blackwood, R.A., Ernst, J.D. 1990Characterization of Ca2+-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins.Biochem. J.266195200PubMedGoogle Scholar
  13. 13.
    Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., Yates, J., Cotman, C., Glabe, C. 1992Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs.J. Biol. Chem.267546554PubMedGoogle Scholar
  14. 14.
    de la Fuente, M., Parra, A.V. 1995Vesicle aggregation by annexin I: role of a secondary membrane binding site.Biochemistry.341039310399PubMedGoogle Scholar
  15. 15.
    Durrell, S.R., Guy, H.R., Arispe, N., Rojas, E., Pollard, H.B. 1994Theoretical models of the ion channel structure of amyloid-β-protein.Biophys. J.6721372145PubMedGoogle Scholar
  16. 16.
    Frazer, S.P., Suh, Y.-H., Djamgoz, M.B.A. 1997Ionic effects of the Alzheimer’s disease β-amyloid precursor protein and its metabolic fragments.Trends Neurosci.206772CrossRefPubMedGoogle Scholar
  17. 17.
    Furukawa, K., Abe, Y., Akaike, N. 1994Amyloid β protein-induced irreversible current in rat cortical neurones.NeuroReport.520162018PubMedGoogle Scholar
  18. 18.
    Galdzicki, Z., Fukuyama, R., Wadhwani, K., Rapoport, S., Ehrenstein, G. 1994β-amyloid increases choline conductance of PC12 cells: possible mechanism of toxicity in Alzheimer’s disease.Brain Res.646332336CrossRefPubMedGoogle Scholar
  19. 19.
    Ghanta, J., Shen, C.-L., Kiessling, L.L., Murphy, R.M. 1996A strategy for designing inhibitors of β-amyloid toxicity.J. Biol. Chem.2712952529528CrossRefPubMedGoogle Scholar
  20. 20.
    Glenner, G.G., Wong, C.W. 1984Alzheimer’s Disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Comm.120885890PubMedGoogle Scholar
  21. 21.
    Haass, C., Schlossmacher, M., Hung, A.Y.,  et al. 1992Amyloid β-peptide is produced by cultured cells during normal metabolism.Nature359322325CrossRefPubMedGoogle Scholar
  22. 22.
    Haass, C., Selkoe, D.J. 1993Cellular processing of β-amyloid precursor protein and the genesis of amyloid-β-peptide.Cell7510391042PubMedGoogle Scholar
  23. 23.
    Hardy, J.A., Higgins, G.A. 1992Alzheimer’s disease: the amyloid cascade hypothesis.Science256780783PubMedGoogle Scholar
  24. 24.
    Hirakura, Y., Lin, M.C., Kagan, B.L. 1999Alzheimer amyloid beta peptide 1-42 channels: effect of solvent, pH, and congo red.J. Neurosci. Res.57458460CrossRefPubMedGoogle Scholar
  25. 25.
    Hirakura, Y., Yiu, W.W., Yamamoto, A., Kagan, B.L. 2000Amyloid peptide channels: blockade by zinc and inhibition by Congo red.Amyloid7194199PubMedGoogle Scholar
  26. 26.
    Kawahara, M., Arispe, N., Kuroda, Y., Rojas, E. 1997Alzheimer’s disease amyloid β-protein forms Zn2+-sensitive cation-selective channels across excited membrane patches from hypothalamic neurons.Biophysical J.736775Google Scholar
  27. 27.
    Kowall, N.C., McKee, A.C., Yankner, B.A., Beal, M.F. 1992In vivo neurotoxicity of beta amyloid [β(1–40)] and thte β(25–35) fragment.Neurobiol. of Aging13531542CrossRefGoogle Scholar
  28. 28.
    Lee, K.Y.C. 2001Interactions of Alzheimer’s amyloid-beta-peptides with lipid membranes.Biophys. J.8023aGoogle Scholar
  29. 29.
    Lee, G., Pollard, H.B. 1997Highly sensitive and stable phosphatidylserine liposome aggregation assay for annexins.Analyt. Biochem.252160164CrossRefPubMedGoogle Scholar
  30. 30.
    Lin, H., Bhatia, R., Lal, R. 2001Amyloid protein forms ion channels: implications for Alzheimer’s disease pathophysiology.FASEB J.1524332444CrossRefPubMedGoogle Scholar
  31. 31.
    Lin, H., Zhu, Y.J., Lal, R. 1999Amyloid β-protein (1–40) forms calcium-permeable Zn2+ sensitive channels in reconstituted lipid vesicles.Biochemistry381118911196PubMedGoogle Scholar
  32. 32.
    Lin, M.C., Kagan, B. 2002Electrophysiologic properties of channels induced by Aβ25–35 in planar lipid bilayers.Peptides2312151228CrossRefPubMedGoogle Scholar
  33. 33.
    Maloof, A.T. 1992Effect of beta amyloid peptides on neurons in hippocampal slice cultures.Neurobiol. of Aging13543551CrossRefGoogle Scholar
  34. 34.
    Mason, R.P., Estermyer, J.D., Kelly, J.F., Mason, P.E. 1996Alzheimer’s disease amyloid β peptide 25–35 is localized in the membrane hydrocarbon core: X-ray diffration analysis.Biochem. Biophys. Res. Comm.2227882CrossRefPubMedGoogle Scholar
  35. 35.
    Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., Beyreuther, K. 1985Amyloid plaque core protein in Alzheimer’s disease and Down syndrome.Proc. Natl Acad. Sci. USA8242454249PubMedGoogle Scholar
  36. 36.
    Mattson, M.P. 1997Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives.Physiol Rev.7710811132PubMedGoogle Scholar
  37. 37.
    Mattson, M.P., Cheng, B., Davis, D., Bryant, K., Liberberg, I., Rydel, R.E. 1992β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitoxicity.J. Neurosci.12376389PubMedGoogle Scholar
  38. 38.
    Mirzabekov, T., Lin, M.C., Yuan, W.L., Marshall, P.J., Carman, M., Tomaselli, K., Lieberburg, I., Kagan, B.L. 1994Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide.Biochem. Biophys. Res. Commun.20211421148CrossRefPubMedGoogle Scholar
  39. 39.
    Muller, W.E., Koch, S., Eckert, A., Hartmann, H., Scheuer, K. 1995β-amyloid peptide decreases membrane fluidity.Brain Res.674133136CrossRefPubMedGoogle Scholar
  40. 40.
    Neve, R.L., Dawes, L.R., Yankner, B.A., Benewitz, L.L., Rodriguez, W., Higgins, G.A. 1990Genetics and biology of the Alzheimer’s amyloid precursor.Prog. Brain. Res.86257267PubMedGoogle Scholar
  41. 41.
    Pike, C.J., Overman, M.J., Cotman, C.W. 1995Amino-terminal deletions enhance aggregation of amyloid peptides in vitro.J. Biol Chem.2702389523898CrossRefPubMedGoogle Scholar
  42. 42.
    Pike, C.J., Walencewicz, A.J., Glabe, C.G., Cottman, C.W. 1991In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity.Brain Res.563311314CrossRefPubMedGoogle Scholar
  43. 43.
    Poduslo, J.F., Curran, G.L., Kumar, A., Frangione, B., Soto, C. 1999Beta-sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood-brain barrier permeability and resistance to proteolytic degradation in plasma.J. Neurobiol.39371382CrossRefPubMedGoogle Scholar
  44. 44.
    Rhee, S.K., Quist, A.P., Lal, R. 1998Amyloid β-protein (1–42) forms calcium-permeable Zn2+-sensitive channels.J. Biol. Chem2731337913382CrossRefPubMedGoogle Scholar
  45. 45.
    Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T.D., Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-Lahad, E., Vitanen, M., Peskind, E., Poorkaj, P., Schellenberg, G., Tanzi, R., Wasco, W., Lannfelt, L., Selkoe, D., Younkin, S. 1996Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease.Nat. Med.2864870PubMedGoogle Scholar
  46. 46.
    Schmechel, D.E., Saunders, A.M., Strittmatter, W.S., Grain, B.J., Hulette, C.M., Joo, S.H.,  et al. 1993Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apoliprotein E genotype in late-onset Alzheimer’s disease.Proc. Natl. Acad. Sci. USA9096469653Google Scholar
  47. 47.
    Selkoe, D.L. 1991The molecular pathology of Alzheimer’s disease.Neuron6487498PubMedGoogle Scholar
  48. 48.
    Selkoe, D.L. 1994Alzheimer’s disease: a central role for amyloid.J. Neuropath. Exp. Neurol.53438447PubMedGoogle Scholar
  49. 49.
    Simmons, M.A., Schneider, C.R. 1993Amyloid β peptides act directly on single neurons.Neurosci. Letts.150133136CrossRefGoogle Scholar
  50. 50.
    Soto, C., Kindy, M.S., Baumann, M., Frangione, B. 1996Inhibition of Alzheimer’s amyloidosis by peptides that prevent β-sheet conformation.Biochem. Biophys. Res. Comm.226672680CrossRefPubMedGoogle Scholar
  51. 51.
    Soto, C., Sigurdsson, E.M., Morelli, L., Kumar, R.A., Castano, E.M., Frangione, B. 1998Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy.Nat. Med.4822826PubMedGoogle Scholar
  52. 52.
    Soto, C., Saborio, G.P., Permanne, B. 2000Inhibiting the conversion of soluble amyloid-beta peptide into abnormally folded amyloidogenic intermediates: relevance for Alzheimer’s disease therapy.Acta Neurol. Scand. Suppl.1769095CrossRefPubMedGoogle Scholar
  53. 53.
    Soto, C. 1999aPlaque busters: strategies to inhibit amyloid formation in Alzheimer’s disease.Mol Med Today.5343350Google Scholar
  54. 54.
    Soto, C. 1999bAlzheimer’s and prion disease as disorders of protein conformation: implications for the design of novel therapeutic approaches.J. Mol. Med.77412418Google Scholar
  55. 55.
    Soto, C. 2001Protein misfolding and disease; protein refolding and therapy.FEBS Lett.498204207CrossRefPubMedGoogle Scholar
  56. 56.
    Terzi, E., Holzemann, G., Seelig, J. 1995Self-association of beta-amyloid peptide (1–40) in solution and binding to lipid membranes.J. Mol Biol.252633642CrossRefPubMedGoogle Scholar
  57. 57.
    Tjernberg, L.O., Näslund, J., Lindqvist, F., Johansson, J., Karlström, A.R., Thyberg, J., Terenius, L., Nordstedt, C. 1996Arrest of β-amyloid fibril formation by a pentapeptide ligand.J. Biol. Chem.27185458548CrossRefPubMedGoogle Scholar
  58. 58.
    Vargas, J., Alarcon, J.M., Rojas, E. 2000Displacement currents associated with the insertion of Alzheimer disease amyloid β-peptide into planar bilayer membranes.Biophys J.79934944PubMedGoogle Scholar
  59. 59.
    Wood, S.J., MacKenzie, L., Maleeff, B., Hurle, M.R., Wetzel, R. 1996Selective inhibition of Abeta fibril formation.J. Biol Chem.27140864092CrossRefPubMedGoogle Scholar
  60. 60.
    Wood, S.J., Wetzel, R., Martin, J.D., Hurle, M.R. 1995Prolines and amyloidogenicity in fragments of the Alzheimer’s peptide beta/A4.Biochemistry.34724730PubMedGoogle Scholar
  61. 61.
    Yankner, B.L., Duffy, L.K., Kirschner, D.A. 1990aNeurotropic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides.Science250279282Google Scholar
  62. 62.
    Zhu, Y.J., Lin, H., Lal, R. 2000Fresh and nonfibrillar amyloid β protein(l–40) induces rapid cellular degeneration in aged human fibroblasts evidence for AβP-channel-mediated cellular toxicity.FASEB J.1412441254PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  1. 1.Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed ServicesUniversity School of Medicine, USUHS, Bethesda, MD, 20814USA

Personalised recommendations