The Journal of Membrane Biology

, Volume 192, Issue 3, pp 203–215 | Cite as

The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: Studies on langmuir-blodgett monolayers, liposomes and J774 macrophages

  • D. Tyteca
  • A. Schanck
  • Y. F. Dufrêne
  • M. Deleu
  • P. J. Courtoy
  • P. M. Tulkens
  • M. P. Mingeot-Leclercq


The macrolide antibiotic azithromycin was shown to markedly inhibit endocytosis. Here we investigate the interaction of azithromycin with biomembranes and its effects on membrane biophysics in relation to endocytosis. Equilibrium dialysis and 31P NMR revealed that azithromycin binds to lipidic model membranes and decreases the mobility of phospholipid phosphate heads. In contrast, azithromycin had no effect deeper in the bilayer, based on fluorescence polarization of TMA-DPH and DPH, compounds that, respectively, explore the interfacial and hydrophobic domains of bilayers, and it did not induce membrane fusion, a key event of vesicular trafficking. Atomic force microscopy showed that azithromycin perturbed lateral phase separation in Langmuir-Blodgett monolayers, indicating a perturbation of membrane organization in lateral domains. The consequence of azithromycin/phospholipid interaction on membrane endocytosis was next evaluated in J774 macrophages by using three tracers with different insertion preferences inside the biological membranes and intracellular trafficking: C6-NBD-SM, TMA-DPH and N-Rh-PE. Azithromycin differentially altered their insertion into the plasma membrane, slowed down membrane trafficking towards lysosomes, as evaluated by the rate of N-Rh-PE self-quenching relief, but did not affect bulk membrane internalization of C6-NBD-SM and TMA-DPH. Azithromycin also decreased plasma membrane fluidity, as shown by TMA-DPH fluorescence polarization and confocal microscopy after labeling by fluorescent concanavalin A. We conclude that azithromycin directly interacts with phospholipids, modifies biophysical properties of membrane and affects membrane dynamics in living cells. This antibiotic may therefore help to elucidate the physico-chemical properties underlying endocytosis.

Key words

Azithromycin Lipids AFM Endocytosis Macrophages Membrane 



6-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl) sphingosyl phosphocholine

N- Rh- PE

N-(lissamine rhodamine B sulfonyl) diacyl phosphatidylethanolamine;






octadecylrhodamine B


atomic force microscopy


multilamellar vesicles


large unilamellar vesicles


small unilamellar vesicles




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agasosler, A.V., Tungodden, L.M., Cejka, D., Bakstad, E., Sydnes, L.K., Holmsen, H. 2001. Chlorpromazine-induced increase in dipalmitoylphosphatidylserine surface area in monolayers at room temperature. Biochem. Pharmacol. 61:817–825PubMedCrossRefGoogle Scholar
  2. Asawakarn, T., Cladera, J., O’Shea, P. 2001. Effects of the membrane dipole potential on the interaction of saquinavir with phospholipid membranes and plasma membrane receptors of Caco-2 cells. J. Biol. Chem. 276:38457–38463PubMedCrossRefGoogle Scholar
  3. Bartlett, G.R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468PubMedGoogle Scholar
  4. Bastiaanse, E.M., Jongsma, H.J., van derLaarse, A., Takens-Kwak, B.R. 1993. Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains. J. Membrane Biol. 136:135–145CrossRefGoogle Scholar
  5. Bazzoni, G., Rasia, M. 2001. Effect of tetracaine chlorhydrate on the mechanical properties of the erythrocyte membrane. Blood Cells Mol. Dis. 27:391–398PubMedCrossRefGoogle Scholar
  6. Bright, G.M., Nagel, A.A., Bordner, J., Desa, K.A., Dibrino, J.N., Nowakowska, J., Vincent, L., Watrous, R.M., Sciavolino, F.C. 1988. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-aza-9a-homoerythromycin A derivatives: a new class of macrolide antibiotics, the azalides. J. Antibiot. 41:1029–1047PubMedGoogle Scholar
  7. Carlier, M.-B., Garcia-Luque, I., Montenez, J-P., Tulkens, P.M., Piret, J. 1994. Accumulation, release and subcellular localization of azithromycin in phagocytic and non-phagocytic cells in culture. Int. J. Tiss. Reac. 16:211–220Google Scholar
  8. Cazzalini, O., Lazze, M.C., Lamele, L., Stivala, L.A., Bianchi, L., Vaghi, P., Cornaglia, A., Calligaro, A., Vannini, V. 2001. Early effects of AZT on mitochondrial functions in the absence of mitochondrial DNA depletion in rat myotubes. Biochem. Pharmacol. 62:893–902PubMedCrossRefGoogle Scholar
  9. Coupin, G., Kuhry, J.-G. 1999. Differentiation between clathrindependent and clathrin-independent endocytosis by means of membrane fluidity measurements. Cell. Biochem. Biophys. 30:25–34PubMedCrossRefGoogle Scholar
  10. Dai, J., Sheetz, M.P. 1995. Regulation of endocytosis, exocytosis, and shape by membrane tension. Cold Spring Harb. Symp. Quant. Biol. 60:567–571PubMedGoogle Scholar
  11. Djokic, S., Kobrehel, G., Lazarevski, G. 1987. Erythromycin series. XII. Antibacterial in vitro evaluation of 10-dihydro-10-deoxo-l1-azaerythromycin A: synthesis and structure-activity relationship of its acyl derivatives. J. Antibiot. 11:1006–1015Google Scholar
  12. Draye, J.P., Courtoy, P.J., Quintart, J., Baudhuin, P. 1988. A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation. J. Cell Biol. 107:2109–2115PubMedCrossRefGoogle Scholar
  13. Dufrêne, Y.F., Lee, G.U. 2000. Advances in the characterization of supported lipid films with the atomic force microscope. Biochim. Biophys. Acta 1509:14–41PubMedCrossRefGoogle Scholar
  14. Düzgünes, N., Allen, T.M., Fedor, J., Papahadjopoulos, D. 1987. Lipid mixing during membrane aggregation and fusion: why fusion assays disagree. Biochemistry 26:8435–8442PubMedCrossRefGoogle Scholar
  15. Farge, E. 1995. Increased vesicle endocytosis due to an increase in the plasma membrane phosphatidylserine concentration. Biophys. J. 69:2501–2506PubMedCrossRefGoogle Scholar
  16. Farge, E., Ojcius, D.M., Subtil, A., Dautry-Varsat, A. 1999. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am. J. Physiol. 276:C725-C733PubMedGoogle Scholar
  17. Friedlander, G., Le Grimellec, C, Giocondi, M.C., Amiel, C. 1987. Benzyl alcohol increases membrane fluidity and modulates cyclic AMP synthesis in intact renal epithelial cells. Biochim. Biophys. Acta 903:341–348PubMedCrossRefGoogle Scholar
  18. Gheber, L.A., Edidin, M. 1999. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys. J. 77:3163–3175PubMedCrossRefGoogle Scholar
  19. Go, M.L., Feng, S.S. 2001. Halofantrine-phospholipid interactions: monolayer studies. Chem. Pharm. Bull. 49:871–876PubMedCrossRefGoogle Scholar
  20. Grage, S.L., Gauger, D.R., Selle, C, Pohle, W., Richter, W., Ulrich, A.S. 2000. The amphiphilic drug flufenamic acid can induce a hexagonal phase in DMPC: a solid state P-31 and F-19-NMR study. Phys. Chem. Chem. Phys. 2:4574–4579CrossRefGoogle Scholar
  21. Heerklotz, H. 2001. Membrane stress and permeabilization induced by asymmetric incorporation of compounds. Biophys. J. 81:184–195PubMedCrossRefGoogle Scholar
  22. Hing, A.W., Schaefer, J., Kobayashi, G.S. 2000. Deuterium NMR investigation of an amphotericin B derivative in mechanically aligned lipid bilayers. Biochim. Biophys. Ada 1463:323–332CrossRefGoogle Scholar
  23. Hoekstra, D., de Boer, T., Klappe, K., Wilschut, J. 1984. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681PubMedCrossRefGoogle Scholar
  24. Huijbregts, R.P., Topalof, L., Bankaitis, V.A. 2000. Lipid metabolism and regulation of membrane trafficking. Traffic 1:195–202PubMedCrossRefGoogle Scholar
  25. Huttner, W.B., Zimmerberg, J. 2001. Implications of lipid microdomains for membrane curvature, budding and fission. Curr. Opin. Cell. Biol. 13:478–484PubMedCrossRefGoogle Scholar
  26. Illinger, D., Poindron, P., Fonteneau, P., Modollel, M., Kuhry, J.G. 1990. Internalization of the lipophilic fluorescent probe trimethylamino-diphenylhexatriene follows the endocytosis and recycling of the plasma membrane in cells. Biochim. Biophys. Acta 1030:73–81PubMedCrossRefGoogle Scholar
  27. Illinger, D., Poindron, P., Kuhry, J.-G. 1991. Membrane fluidity aspects in endocytosis; a study with the fluorescent probe trimethylamino-diphenylhexatriene in L929 cells. Biol. Cell 71:293–296PubMedCrossRefGoogle Scholar
  28. Jutila, A., Soderlund, T., Pakkanen, A.L., Huttunen M., Kinnunen, P.K. 2001. Comparison of the effects of clozapine, chlorpromazine and haloperidol on membrane lateral heterogeneity. Chem. Phys. Lipids 112:151–163PubMedCrossRefGoogle Scholar
  29. Kaiser, R.D., London, E., 1998. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 37:8180–8190PubMedCrossRefGoogle Scholar
  30. Kitagawa, S., Matsubayashi, M., Kotani, K., Usui, K., Kametani, F. 1991. Asymmetry of membrane fluidity in the lipid bilayer of blood platelets: fluorescence study with diphenylhexatriene and analogs. J. Membrane Biol. 119:221–227CrossRefGoogle Scholar
  31. Kok, J.W., ter Beest, M., Scherphof, G., Hoekstra, D. 1990. A non-exchangeable fluorescent phospholipid analog as a membrane traffic marker of the endocytic pathway. Eur. J. Cell Biol. 53:173–184Google Scholar
  32. Koval, M., Pagano, R.E. 1989. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J. Cell Biol. 108:2169–2181PubMedCrossRefGoogle Scholar
  33. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  34. Marsh, M. 2001. Endocytosis. Oxford University Press. Corby, Northants, UKGoogle Scholar
  35. Mason, R.P., Mak, IT., Trumbore, M.W., Mason, P.E. 1999. Antioxidant properties of calcium antagonists related to membrane biophysical interactions. Am. J. Cardiol. 84:16L-22LPubMedCrossRefGoogle Scholar
  36. Milhaud, J., Ponsinet, V., Takashi, M., Michels, B. 2002. Interactions of the drug amphotericin B with phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol. Biochim. Biophys. Acta 1558:95–108PubMedCrossRefGoogle Scholar
  37. Mingeot-Leclercq, M.-P., Gallet, X., Flore, C, Van Bambeke, F., Peuvot, J., Brasseur, R. 2001. Experimental and conformational analyses of interactions between butenafine and lipids. Antimicrob. Agents Chemother. 45:3347–3354PubMedCrossRefGoogle Scholar
  38. Mingeot-Leclercq, M.P., Schanck, A., Ronveaux-Dupal, M.F., Deleers, M., Brasseur, R., Ruysschaert, J.M., Laurent, G., Tulkens, P.M. 1989. Ultrastructural, physico-chemical and conformational study of the interactions of gentamicin and bis(beta-diethylaminoethylether)hexestrol with negatively charged phospholipid bilayers. Biochem. Pharmacol. 38:729–741PubMedCrossRefGoogle Scholar
  39. Mingeot-Leclercq, M.P., Tulkens, P.M. 1999. Aminoglycosides: nephrotoxicity. Antimicrob. Agents Chemother. 43:1003–1012PubMedGoogle Scholar
  40. Montenez, J.P., Van Bambeke, F., Piret, J., Brasseur, R., Tulkens, P.M., Mingeot-Leclercq, M.P. 1999. Interactions of macrolide antibiotics (erythromycin A, roxithromycin, erythromycylamine and azithromycin) with phospholipids: computer-aided conformational analysis and studies on acellular and cell culture models. Toxicol. Applied Pharmacol. 156:129–140CrossRefGoogle Scholar
  41. Montenez, J.P., Van Bambeke, F., Piret, J., Schanck, A., Brasseur, R., Tulkens, P.M., Mingeot-Leclercq, M.P. 1996. Interaction of the macrolide azithromycin with phospholipids. II. Biophysical and computer-aided conformational studies. Eur. J. Pharmacol. 314:215–227PubMedCrossRefGoogle Scholar
  42. Morgan, C.G., Williamson, H., Fuller, S., Hudson, B. 1983. Melittin induces fusion of unilamellar phospholipid vesicles. Biochim. Biophys. Acta 732:668–674PubMedCrossRefGoogle Scholar
  43. Mukherjee, S., Ghosh, R.N., Maxfield, F.R. 1997. Endocytosis. Physiol. Rev. 77:759–803PubMedGoogle Scholar
  44. Mukherjee, S., Maxfield, F.R. 2000. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1:203–211PubMedCrossRefGoogle Scholar
  45. Puri, V., Watanabe, R., Singh, R.D., Dominguez, M., Brown, J.C., Wheatley, C.L., Marks, D.L., Pagano, R.E. 2001. Clathrindependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154:535–547PubMedCrossRefGoogle Scholar
  46. Rauch, C, Farge, E. 2000. Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys. J. 78:3036–3047PubMedCrossRefGoogle Scholar
  47. Raucher, D., Sheetz, M.P. 2001. Phospholipase C activation by anesthetics decreases membrane-cytoskeleton adhesion. J. Cell. Sci. 114:3759–3766PubMedGoogle Scholar
  48. Roberson, M., Neri A., Oppenheimer, S.B. 1975. Distribution of concanavalin A receptor sites on specific populations of embryonic cells. Science 189:639–640PubMedCrossRefGoogle Scholar
  49. Roth, M.G., Sternweis, P.C. 1997. The role of lipid signaling in constitutive membrane traffic. Curr. Opin. Cell Biol. 9:519–526PubMedCrossRefGoogle Scholar
  50. Saint-Laurent, A., Boudreau, N., Lariviere, D., Legault, J., Gaudreault, R.C., Auger, M. 2001. Membrane interactions of a new class of anticancer agents derived from arylchloroethylurea: a FTIR spectroscopic study. Chem. Phys. Lipids 111:163–175PubMedCrossRefGoogle Scholar
  51. Seelig, J. 1978.31P Nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim. Biophys. Acta 515:105–140PubMedGoogle Scholar
  52. Snyderman, R., Pike, M.C., Fischer, D.G., Koren, H.S. 1977. Biologic and biochemical activities of continuous macrophage cell lines P 338 Dl and J 774 1. J. Immunol. 119:2060–2066PubMedGoogle Scholar
  53. Sparr, E., Ekelund, K., Engblom, J., Engstreöm, S., Wennerstöm, H. 1999. An AFM study of lipid monoiayers: II. The effect of cholesterol on fatty acids. Langmuir 15:6946–6949CrossRefGoogle Scholar
  54. Takei, K., Haucke, V. 2001. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol. 11:385–391PubMedCrossRefGoogle Scholar
  55. Tang, Q., Edidin, M. 2001. Vesicle trafficking and cell surface membrane patchiness. Biophys. J. 81:196–203PubMedCrossRefGoogle Scholar
  56. Tyteca, D., Van DerSmissen, P., Mettlen, M., Van Bambeke, F., Tulkens, P.M., Mingeot-Leclercq, M.P., Courtoy, P.J. 2002. Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. Exp. Cell Res. 281: 86–100PubMedCrossRefGoogle Scholar
  57. Tyteca, D., Van DerSmissen, P., Van Bambeke, F., Leys, K., Tulkens, P.M., Courtoy, P.J., Mingeot-Leclercq, M.P. 2001. Azithromycin, a lysosomotropic antibiotic, impairs fluid-phase pinocytosis in cultured fibroblasts. Eur. J. Cell Biol. 80:466–478PubMedCrossRefGoogle Scholar
  58. Van Bambeke, F., Mingeot-Leclercq, M.P., Schanck, A., Brasseur, R., Tulkens, P.M. 1993. Alterations in membrane permeability induced by aminoglycoside antibiotics: studies on liposomes and cultured cells. Eur. J. Pharmacol. 247:155–168PubMedCrossRefGoogle Scholar
  59. Van Bambeke, F., Montenez, J.P., Piret, J., Tulkens, P.M., Courtoy, P.J., Mingeot-Leclercq, M.P. 1996. Interaction of the macrolide azithromycin with phospholipids. I. Inhibition of lysosomal phospholipase Al activity. Eur. J. Pharmacol. 314:203–214PubMedCrossRefGoogle Scholar
  60. Van Bambeke, F., Tulkens, P.M., Brasseur, R., Mingeot-Leclercq, M.P. 1995. Aminoglycoside antibiotics induce aggregation but not fusion of negatively-charged liposomes. Eur. J. Pharmacol. 289:321–333PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • D. Tyteca
    • 1
  • A. Schanck
    • 2
  • Y. F. Dufrêne
    • 3
  • M. Deleu
    • 4
  • P. J. Courtoy
    • 5
    • 6
  • P. M. Tulkens
    • 1
  • M. P. Mingeot-Leclercq
    • 1
  1. 1.Unité de Pharmacologie Cellulaire et MoléculaireUniversité Catholique de LouvainBrusselsBelgium
  2. 2.Unité de Chimie Structurale et des Mécanismes RéactionnelsUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Unité de Chimie des InterfacesUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Unité de Chimie Biologique IndustrielleFaculté Universitaire des Sciences Agronomiques de GemblouxGemblouxBelgium
  5. 5.Unité de Biologie CellulaireUniversité Catholique de LouvainBrusselsBelgium
  6. 6.Christian de Duve Institute of Cellular PathologyBrusselsBelgium

Personalised recommendations