The Journal of Membrane Biology

, Volume 192, Issue 3, pp 181–189 | Cite as

Effects of palytoxin on cation occlusion and phosphorylation of the (Na+,K+)-ATPase

  • M. T. Tosteson
  • J. Thomas
  • J. Arnadottir
  • D. C. Tosteson
Article

Abstract

Palytoxin (PTX) inhibits the (Na+ + K+)-driven pump and simultaneously opens channels that are equally permeable to Na+ and K+ in red cells and other cell membranes. In an effort to understand the mechanism by which PTX induces these fluxes, we have studied the effects of PTX on: 1) K+ and Na+ occlusion by the pump protein; 2) phosphorylation and dephosphorylation of the enzyme when a phosphoenzyme is formed from ATP and from Pi; and 3) p-nitro phenyl phosphatase (p-NPPase) activity associated with the (Na+,K+)-ATPase. We have found that palytoxin 1) increases the rate of deocclusion of K+(Rb+) in a time- and concentration-dependent manner, whereas Na+ occluded in the presence of oligomycin is unaffected by the toxin; 2) makes phosphorylation from Pi insensitive to K+, and 3) stimulates the p-NPPase activity. The results are consistent with the notion that PTX produces a conformation of the Na+,K+-pump that resembles the one observed when ATP is bound to its low-affinity binding site. Further, they suggest that the channels that are formed by PTX might arise as a consequence of a perturbation in the ATPase structure, leading to the loss of control of the outside “gate” of the enzyme and hence to an uncoupling of the ion transport from the catalytic function of the ATPase.

Key words

Palytoxin (Na+,K+)-ATPase p-NPPase Cation occlusion Phosphorylation ATPase channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argüello, J.M., Kaplan, J.H. 1991. Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase. J. Biol. Chem. 266:14627–14635PubMedGoogle Scholar
  2. Argüello, J.M., Kaplan, J.H. 1994. Glutamate779, an intramem-brane carboxyl, is essential for monovalent cation binding by the Na,K-ATPase. J. Biol. Chem. 69:6892–6899Google Scholar
  3. Askari, A., Huang, W., McCormick, P. 1983. (Na + K)-dependent adenosine triphosphatase. Regulation of inorganic phosphate, magnesium ion and calcium ion interactions with the enzyme by ouabain. J. Biol. Chem. 258:3453–3460PubMedGoogle Scholar
  4. Berberian, G., Beauge, L. 1985. Phosphatase activity of the (Na + K)-ATPase. Ligand interactions and related enzyme forms. Biochim. Biophys. Acta 821:17–29PubMedCrossRefGoogle Scholar
  5. Cantley, L.C., Cantley, L.G., Josephson, L. 1978. A characterization of vanadate interactions with the (Na,K)-ATPase. J. Biol. Chem. 20:7361–7368Google Scholar
  6. Cornelius, F. 1995. Phosphorylation/dephosphorylation of reconstituted shark Na,K-ATPase: one phosphorylation site per alpha beta protomer. Biochim. Biophys. Acta 1235:197–204PubMedCrossRefGoogle Scholar
  7. Cornelius, F., Fedosova, N.U., Klodos, I. 1998. E2P phosphoforms of Na,K-ATPase. II. Interaction of substrate and cation-binding sites in Pi phosphorylation of Na,K-ATPase. Biochem. 37:16686–16696CrossRefGoogle Scholar
  8. Esmann, M. 1994. Influence of Na on conformational states in membrane-bound renal Na,K-ATPase. Biochem. 33:8558–8565CrossRefGoogle Scholar
  9. Esmann, M., Skou, J.C. 1985. Occlusion of Na by the Na,K-AT-Pase in the presence of oligomycin. Biochim. Biophys. Acta 127:857–863Google Scholar
  10. Fedosova, N.U., Cornelius, F., Klodos, I. 1995. Fluorescent styryl dyes as probes for Na,K-ATPase reaction mechanism: significance of the charge of the hydrophilic moiety of RH dyes. Biochem. 34:16806–16814CrossRefGoogle Scholar
  11. Fedosova, N.U., Cornelius, F., Klodos, I. 1998. E2P phosphoforms of Na,K-ATPase. I. Comparison of phosphointermediates formed from ATP and Pi by their reactivity toward hydroxyl-amine and vanadate. Biochem. 37:13634–13642CrossRefGoogle Scholar
  12. Forbush III, B. 1987. Rapid release of K and Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP. J. Biol. Chem. 262:11104–11115Google Scholar
  13. Glynn, I.M., Hara, Y., Richards, D.E. 1984. The occlusion of sodium ions within the mammalian sodium-potassium pump: its role in sodium transport. J. Physiol. 351:531–547PubMedGoogle Scholar
  14. Guennoun, S., Horisberger, J.-D. 2000. Structure of the 5th transmembrane segment of the Na,K-ATPase alpha subunit: a cysteine-scanning mutagenesis study. FEBS Lett. 482:144–148PubMedCrossRefGoogle Scholar
  15. Guennoun, S., Horisberger, J.-D. 2002. Cysteine-scanning mutagenesis study of the sixth transmembrane segment of the Na,K-ATPase alpha subunit. FEBS Lett. 513:277–281PubMedCrossRefGoogle Scholar
  16. Habermann, E. 1989. Palytoxin acts through the Na,K-ATPase. Toxicon 27:1171–1187PubMedCrossRefGoogle Scholar
  17. Habermann, E., Chhatwal, G.S. 1982. Ouabain inhibits the increase due to palytoxin of cation permeability of erythrocytes. Naunyn-Schmiedeberg’s Arch. Pharmac. 319:101–107CrossRefGoogle Scholar
  18. Hasenauer, J., Huang, Wu-H., Askari, A. 1993. Allosteric regulation of the access channels to the Rb occlusion sites of (Na + K)-ATPase. J. Biol. Chem. 268:3289–3297PubMedGoogle Scholar
  19. Henderson, G.R., Askari, A. 1977. Transport ATPase: further studies on the properties of the thimerosal-treated enzyme. Arch. Biochem. Biophys. 182:221–226PubMedCrossRefGoogle Scholar
  20. Ibrahim, A.R., Shier, W.T. 1987. Palytoxin: mechanism of action of a potent marine toxin. L. Toxicol-Toxin Reviews 6:159–187Google Scholar
  21. Jensen, J., Ottolenghi, P. 1983. ATP binding to solubilized (Na + K)-ATPase. The abolition of subunit-subunit interaction and the maximum weight of the nucleotide-binding unit. J. Biol. Chem. 258:14895–14907Google Scholar
  22. Jørgensen, P.L., Nielsen, J.M., Rasmussen, J.H., Pedersen, P.A. 1999. Identification of amino acid residues involved in Na or K (Tl) binding in Na,K-ATPase; contribution to Na/K specificity. In : 9th International Conference on the Na,K-ATPase and related ATPases. K. Taniguchi and S.Kaya, editors, pp. 95–102.Elsevier Science B.V., Sapporo, JapanGoogle Scholar
  23. Kaplan, J.H., Lutsenko, S., Gatto, C, Daoud, S., Kenney, L.J. 1996. Ligand-induced conformational changes in the Na,K-ATPase alpha subunit. In : Na/K-ATPase and Related Transport ATPases. Structure, Mechanism and Regulation. L.A. Beauge, D.C. Gadsby and P.J. Garrahan, editors, pp. 45–55. The New York Academy of Sciences, Mar del Plata, Buenos Aires, ArgentinaGoogle Scholar
  24. Kaplan, J.H., Mone, M.D. 1985. Modified cation activation of the (Na + K)-ATPase following treatment with thimerosal. Arch. Biochem. Biophys. 237:386–395PubMedCrossRefGoogle Scholar
  25. Lingrel, J.B., Argüello, J.M., van Huysse, J., Kuntzweiler, T.A. 1996. Cation and cardiac glycoside binding sites of the Na,K-ATPase. In : Na/K-ATPase and Related Transport ATPases. Structure, Mechanism and Regulation. Beauge, L.A. Gadsby D.C. and Garrahan, P.J. editors, pp. 194–206. The New York Academy of Sciences, Mar del Plata, Buenos Aires, ArgentinaGoogle Scholar
  26. Liu, L., Askari, A. 1997. Evidence for the existence of two ATP-sensitive Rb occlusion pockets within the transmembrane domains of Na/K-ATPase. J. Biol. Chem. 272:14380–14386PubMedCrossRefGoogle Scholar
  27. Lutsenko, S., Anderko, R., Kaplan, J.H. 1995. Membrane disposition of the M5-M6 hairpin of Na,K-ATPase alpha subunit is ligand dependent. Proc. Natl. Acad. Sci. USA 92:7936–7940PubMedCrossRefGoogle Scholar
  28. Malo, D. 1951. Hawaiian antiquities. (Translated by Dr.N. B.Emerson). Bishop Museum Press. Honolulu, HawaiiGoogle Scholar
  29. Moore, R.E., Scheuer, P.J. 1971. Palytoxin: a new marine toxin from a coelenterate. Science 172:495–498PubMedCrossRefGoogle Scholar
  30. Ozaki, H., Nagase, H., Urakawa, N. 1985. Interaction of palytoxin and cardiac glycosides on erythrocyte membrane and (Na,K)-ATPase. Eur. J. Biochem. 152:475–80PubMedCrossRefGoogle Scholar
  31. Pitts, B.J., Askari, A. 1971. Stimulation of the phosphatase activity of (Na,K)-ATPase preparation by ouabain. Biochim. Biophys. Acta 225:388–391PubMedCrossRefGoogle Scholar
  32. Post, R.L., Hegyvary, C, Kume, S. 1972. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247:6530–6540PubMedGoogle Scholar
  33. Post, R.L., Taniguchi, K., Toda, G. 1974. Synthesis of adenosine triphosphate by Na,K-ATPase. Ann. New York Acad. Sci. 242:80–91CrossRefGoogle Scholar
  34. Robinson, J.D. 1969. Effects of phlorizin on membrane cation-dependent adenosine triphosphatase and p-nitrophenyl phosphatase activities. Mol. Pharmacol. 5:584–592PubMedGoogle Scholar
  35. Scheiner-Bobis, G., Heringdorf, D.M.-Z., Christ, M., Habermann, E. 1994. Palytoxin induces K efflux from yeast cells expressing the mammalian sodium pump. Molec. Pharmacol. 45:1132–1138Google Scholar
  36. Skou, J.C. 1974. Effect of ATP on the intermediary steps of the reaction of the (Na + K)-dependent enzyme system. III. Effect on the p-nitrophenylphosphatase activity of the system. Biochim. Biophys. Acta 339:258–273CrossRefGoogle Scholar
  37. Tosteson, M.T. 2000. Mechanism of action, pharmacology and toxicology. In : Seafood and freshwater toxins. L.M.Botana, editor, pp. 549 566. Marcel Dekker, New York-BaselGoogle Scholar
  38. Tosteson, M.T., Halperin, J.A., Kishi, Y., Tosteson, D.C. 1991. Palytoxin induces an increase in the cation conductance of red cells. J. Gen. Physiol. 98:969–985PubMedCrossRefGoogle Scholar
  39. Tosteson, M.T., Scriven, D.R.L., Bharadwaj, A., Arnadottir, J., Tosteson, D.C. 1997. Interaction of palytoxin with the Na,K-ATPase. Where are those sites? In : Na/K-ATPase and Related Transport ATPases. Structure, Mechanism and Regulation.Google Scholar
  40. L.A. Beauge, D.C. Gadsby and P.J. Garrahan, editors, pp. 424–425. The New York Academy of Sciences, Mar del Plata, Buenos Aires, ArgentinaGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. T. Tosteson
    • 1
  • J. Thomas
    • 1
  • J. Arnadottir
    • 1
  • D. C. Tosteson
    • 1
  1. 1.Laboratory for Membrane Transport, Department of Cell BiologyHarvard Medical SchoolCambridgeUSA

Personalised recommendations