Advertisement

Sand dunes effect on the productivity of a single slope solar distiller

  • Abderrahmane KhechekhoucheEmail author
  • Boubaker Benhaoua
  • Muthu Manokar
  • Ravishankar Sathyamurthy
  • Abd Elnaby Kabeel
  • Zied Driss
Original
  • 32 Downloads

Abstract

Access to drinking water in many parts of the globe is shrinking over the years and much of the water resources are polluted or unpurified. North Africa is facing a huge water shortage due to drought and climate change. Water desalination has become very popular and serves as solar distillation which is proving to be an economical, simple and ecological technique, especially in rural and remote areas. Significant efforts have been made by many researchers in various laboratories to increase and improve the productivity of solar greenhouse distillation. In the present work, emphasis has been placed on the study of a single slope solar distiller having as dimension 50 × 50 cm, in the thickness of the impure water is 1 cm. Natural sand dunes from the El Oued South region of Algeria have been tested as a factor of efficiency improvement. A layer of this sand was deposited on the bottom of the distiller covering the whole surface on which the submit water is emerged. The results show that the productivity of distilled water has unfortunately decreased by 1.46 times.

Keywords

Desalination Drinking water Solar distiller Evaporation 

Nomenclature

Mew

hourly condensate production (kg/m2 h)

Lfg

latent heath (kJ/kg K)

A

area (m2)

I(t)

solar irradiance (W/h)

Ta

ambiant temperatue (°C)

Tw

water temperature (°C)

Ts

Sky temperature (°C)

ηth

thermal efficiency (%)

ηpe

passive exergy efficiency (%)

Exoutput

the hourly exergy output efficiency (W/m2)

Exinput

the hourly exergy input efficiency (W/m2)

Notes

References

  1. 1.
    Ghaffour N, Bundschuh J, Mahmoudi H, Goosen MFA (2015) Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination 356:94–114.  https://doi.org/10.1016/j.desal.2014.10.024 CrossRefGoogle Scholar
  2. 2.
    Khechekhouche A, Boukhari A (2016) The effect of a refractor on the productivity of a single slope solar distiller. In: The 4th international seminar on new and renewable energies, AlgeriaGoogle Scholar
  3. 3.
    Chandrashekara M, Yadav A (2017) Water desalination system using solar heat: a review. Renewable Sustainable Energy Rev 67:1308–1330.  https://doi.org/10.1016/j.rser.2016.08.058 CrossRefGoogle Scholar
  4. 4.
    Organisation mondiale de la santé (OMS) (1994) Directives de qualité pour l’eau de boisson. Recommandations Vol. 1. 2e édn. OMS, Genève, pp 187–195Google Scholar
  5. 5.
    Youcef L, Samia A (2001) Efluoruration des eaux souterraines de sud algerien par la chaux et le sulfat d’aluminium. Courrier du Savoir 1:65–71Google Scholar
  6. 6.
    Bouchekima B (2003) Solar desalination plant for small size use in remote arid areas of South Algeria for the production of drinking water. Desalination 156(1–3):353–354.  https://doi.org/10.1016/S0011-9164(03)00367-9 CrossRefGoogle Scholar
  7. 7.
    Bouchekima B (2003) A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria. Desalination 159:197–204.  https://doi.org/10.1016/S0011-9164(03)90071-3 CrossRefGoogle Scholar
  8. 8.
    Bouchekima B (2003) A solar desalination plant for domestic water needs in arid areas of South Algeria. Desalination 153:65–69.  https://doi.org/10.1016/S0011-9164(02)01094-9 CrossRefGoogle Scholar
  9. 9.
    Khechekhouche A, Benhaoua B, Driss Z (2017) Solar distillation between a simple and double-glazing. Recueil de mécanique 2(2).  https://doi.org/10.5281/zenodo.1169839
  10. 10.
    Badran O, Abu-Khader MM (2007) Evaluating thermal performance of a single slope solar still. Heat Mass Transfer 43:985.  https://doi.org/10.1007/s00231-006-0180-0 CrossRefGoogle Scholar
  11. 11.
    Omara ZM, Kabeel AE, Younes MM (2014) Enhancing the stepped solar still performance using internal and external reflectors. Energy Conver Manage 78:876–881CrossRefGoogle Scholar
  12. 12.
    Eid EI, Khalaf-Allah RA, Dahab MA (2018) An experimental study of solar desalination using free jets and an auxiliary hot air stream heat. Mass Transfer 54:1177CrossRefGoogle Scholar
  13. 13.
    Muthu Manokar A, Prince Winston D, Kabeel AE, Sathyamurthy R, Arunkumar T. (2018) Heat Mass Transfer 54:593  https://doi.org/10.1007/s00231-017-2170-9 CrossRefGoogle Scholar
  14. 14.
    Pandey PK, Upadhyay R (2016) Desalination of brackish water using solar energy. Int J Renew Energy Res 6(2):350–354. 19Google Scholar
  15. 15.
    Panchal H, Awasthi A (2017) Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes. Heat Mass Transfer 53:1943.  https://doi.org/10.1007/s00231-016-1953-8 CrossRefGoogle Scholar
  16. 16.
    Khechekhouche A, Boukhari A, Driss Z, Benhissen N (2017) Seasonal effect on solar distillation in the El-Oued region of south-east Algeria. Int J Energetica 2(1):42–45Google Scholar
  17. 17.
    Sharshir SW, Peng G, Wu L, Yang N, Essa FA, Elsheikh AH, Mohamed SIT, Kabeel AE (2017) Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Thermal Eng J 113:684–693CrossRefGoogle Scholar
  18. 18.
    Elango T, Kannan A, Murugavel K (2015) Performance study on single basin single slope solar still with different water nanofluids. Desalination 360:45 51.  https://doi.org/10.1016/j.desal.2015.01.004 CrossRefGoogle Scholar
  19. 19.
    Mahiana O, Kianifara A, Herisb SZ, Wencd D, Sahine AZ, Wongwises S (2017) Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy 36:134–155.  https://doi.org/10.1016/j.nanoen.2017.04.025 CrossRefGoogle Scholar
  20. 20.
    Elsheikh AH, Sharshir SW, Mostafa ME, Essa FA, Ali MKA (2017) Applications of nanofluids in solar energy: a review of recent advances. Renew Sustain Energy Rev.  https://doi.org/10.1016/j.rser.2017.10.108 CrossRefGoogle Scholar
  21. 21.
    Muthu M, Prince Winstonb D, Kabeel AE, Sathyamurthy R (2018) Sustainable fresh water and power production by integrating PV panel in inclined solar still. J Clean Prod 172(20):2711–2719Google Scholar
  22. 22.
    Panchal H (2018) Annual performance analysis of various energy storage materials in the upper basin of a double-basin solar still with vacuum tubes. Int J Ambient Energy.  https://doi.org/10.1080/01430750.2018.1472653
  23. 23.
    Panchal H, Mohan I (2017) Various methods applied to solar still for enhancement of distillate output. Desalination 415:76–89.  https://doi.org/10.1016/j.desal.2017.04.015 CrossRefGoogle Scholar
  24. 24.
    Praveen Kumara B, Winstona P, Pounraj P, Muthu Manokar A, Sathyamurthy R, Kabeel AE (2018) Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination 435:140–151CrossRefGoogle Scholar
  25. 25.
    Madhu B, Balasubramanian BE, Ravishankar S, Nagarajan PK, Devarajan MB, Ramani B, Muthu Manokar A (2018) Exergy analysis of solar still with the sand heat energy storage. Appl Solar Energy 54(3)Google Scholar
  26. 26.
    Kabeel AE, El-Agouz SA, Arunkumar T, Sathyamurthy R. In: Enhancing the performance of single slop solar still using jute cloth knited zith sand heat energy storage. Twentieth International Water Technology Conference, IWTC20. Hurghada, 2017Google Scholar
  27. 27.
    Youcef L (2006) Elimination de polluants minéraux des eaux par des procédés physico-chimiques de précipitation et d'adsorption. PhD thesis in hydraulic sciences, Mohamed Khider University – Biskra, pp 9. http://thesis.univ-biskra.dz/2720/
  28. 28.
    Miloudi AM, Remini B (2016) Water potentiality of sustainable management challenges in the Oued Souf Region, South East Algeria. Int J Energetica 1(1):36–39Google Scholar
  29. 29.
  30. 30.
    Mahfoudi N, Khechekouche A, Moummi A, Benhaoua B, El Ganaoui M (2015) Design and characterization of a portable heat storage facility. Mech Ind 16(4).  https://doi.org/10.1051/meca/2015021 CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Manokar AM, Winston DP, Sathyamurthy R, Kabeel AE, Prasath AR (2018) Experimental investigation on pyramid solar still in passive and active mode. Heat Mass Transf:1–14.  https://doi.org/10.1007/s00231-018-2483
  33. 33.
    Soulié F (2005) Cohésion par capillarité et comportement mécanique de milieux granulaires. PhD Thesis, Université Montpellier II, pp 12–23Google Scholar
  34. 34.
    Nemes CT, Laconsay CJ, Galbraith JM (2018) Hydrogen bonding from a valence bond theory perspective: the role of covalency. Phys Chem Chem Phys 20(32):20963–20969.  https://doi.org/10.1039/c8cp03920h CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Valorisation and Technology of Sahara Resources (VTRS)El Oued UniversityEl OuedAlgeria
  2. 2.Development Renewable Energy Unit in Arid Zones (UDERZA)University of El OuedEl OuedAlgeria
  3. 3.Department of Mechanical EngineeringBS Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  4. 4.Department of Automobile EngineeringHindustan Institute of Technology and ScienceChennaiIndia
  5. 5.Mechanical and Power Engineering Department, Faculty of EngineeringTanta UniversityTantaEgypt
  6. 6.Laboratory of Electromechanical Systems (LASEM), ENISUniversity of SfaxSfaxTunisia

Personalised recommendations