Advertisement

Heat transfer during film condensation inside plain tubes. Review of experimental research

  • Volodymyr Rifert
  • Volodymyr SeredaEmail author
  • Vadim Gorin
  • Peter Barabash
  • Andrii Solomakha
Review
  • 14 Downloads

Abstract

This paper provides a comprehensive review of the published experimental researches on condensation heat transfer inside plain tubes. The existing methods of the research on heat transfer and hydrodynamics have been analyzed and their disadvantages are substantiated (shown). There are considered more than 40 empirical and semi-empirical methods and correlations for prediction of heat transfer coefficients in various heat exchangers, particularly in the evaporative systems of thermal desalinating plants, air conditioning systems, safety systems of reactors, heaters of power plants and condensers of cooling equipment. The given correlations are compared with the experimental data of various authors obtained in the case of condensation of diverse substances in different flow regimes. The correlations are evaluated with the experimental data of different authors for different fluids and flow conditions. According to the comparison performed, the correlations suggested by Thome and others (2003), Cavallini and others (2006), Shah (2015) and Rifert and others (2018) are recommended to be used for the most accurate prediction of heat transfer coefficients in case of condensation of various refrigerants, which in recent years are becoming widespread in power economy (fluid FC-72, methane, carbone dioxide, organic fluids R245fa, Novec®649, HFE-7000, steam, etc.).

Nomenclature

Boi

Boiling number (\( =\frac{Q}{W\left({h}_{v, in}-{h}_{v, out}\right)} \)).

Cf

friction coefficient.

cp

liquid specific heat, [J/(kgK)].

d

inner diameter of the tube, [m].

f

friction factor.

Frl

liquid Froude number (\( =\frac{{\left[G\left(1-x\right)\right]}^2}{\rho_l^2 gd} \)).

G

mass velocity, [kg/(m2s)].

g

gravitational acceleration, [m/s2].

Ga

Galileo number (\( ={\rho}_l\left({\rho}_l-{\rho}_v\right){gd}^3/{\mu}_l^2 \)).

hv,in

specific enthalpy of saturated vapour refrigerant at inlet of the tube, [J/kg].

hv,out

specific enthalpy of saturated vapour refrigerant at outlet of the tube, [J/kg].

Jal

liquid Jakob number (\( ={\rho}_l\left({\rho}_l-{\rho}_v\right){gd}^3/{\mu}_l^2 \)).

Jg

dimensionless vapour velocity. (=xG/[gdρv(ρl − ρv)]0.5)

l

length of the tube, [m].

Nu

Nusselt number (=αd/λl).

Nuf

film Nusselt number, (\( =\alpha /{\lambda}_l{\left({v}_l^2/g\right)}^{1/3} \)).

p

pressure, Pa.

pcr

critical pressure, Pa.

Pr

Prandtl number.

pr

reduced pressure (=ps/pcr).

Q

total rate of heat rejected by refrigerant, [W].

q

heat flux, [W∙m−2].

qz

average along the length of the tube heat flux, [W∙m−2].

r

heat of vaporization, [J∙kg−1].

Ref

film Reynolds number (=ql/(l)).

Rel

liquid Reynolds number (=G(1 − x)d/μl).

Relo

Reynolds number assuming total mass flowing as a vapour (=Gd/μl).

Rev

vapour Reynolds number (=Gxd/μv).

Revo

Reynolds number assuming total mass flowing as a vapour (=Gd/μv).

Suv

vapour Suratman nubmer (\( ={\rho}_v\sigma d/{\mu}_v^2 \)).

t

temperature, [°C].

u

axial velocity, [m/s].

W

mass flow rate, [kg/s].

We

Weber number, (=G2d/(ρσ)).

x

vapour quality.

Xtt

Martinelli parameter (=(μl/μv)0.1(ρv/ρl)0.5[(1 − x)/x]0.9)

y

radial distance from the wall, [m].

z

axial coordinate, [m].

Greek symbols

α

heat transfer coefficient, [W/(m2K)].

αaver

average along the length of the tube heat transfer coefficient, [W/(m2K)].

δ

thickness of the condensate film, [m].

ΔP/Δz

pressure drop, [Pa/m].

P/Δz)a

acceleration pressure drop, [Pa/m].

P/Δz)f

frictional pressure drop, [Pa/m].

ΔT

temperature difference (=ts-tw), [K].

Δx

changes in vapour quality.

ε

void fraction.

θ

liquid level angle subtended from the top of the tube to the liquid level, [rad].

λ

thermal conductivity, [W/(mK)].

μ

dynamic viscosity, [Pa·s].

ν

kinematic viscosity, [m2 s−1].

ρ

density, [kg/m3].

σ

surface tension, [N/m].

τw

shear stress, [Pa].

τg

gravity force, [Pa].

φ

angular coordinate, [°].

ϕ2

two-phase multiplier.

Φ2

parameter that takes into account influence of two-phase flow on shear stress.

Φq

parameter that takes into account surface suction at the interphase.

Sub- and superscripts

aver

average.

b

bottom.

c

convective.

eq

equivalent.

f

film.

in

inlet of the tube.

l

liquid.

lo

corresponding to the entire flow as a liquid.

m

momentum.

out

outlet of the tube.

s

saturated.

t

top.

tp

two-phase.

v

vapour.

vo

corresponding to the entire flow as a vapour.

w

wall.

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Tepe J, Mueller A (1947) Condensation and subcooling inside an inclined tube. Chem Eng Prog 43(5):267–278Google Scholar
  2. 2.
    Rifert V, Sereda V, Solomakha A (2019) Heat transfer during film condensation inside plain tubes. Review of theoretical research. Heat Mass Transf.  https://doi.org/10.1007/s00231-019-02636-8 CrossRefGoogle Scholar
  3. 3.
    Rifert V (1983) Vapor condensation inside horizontal pipes. J Eng Phys 44(6):700–710Google Scholar
  4. 4.
    Rifert V, Sereda V (2015) Condensation inside smooth horizontal tubes: Part 1. Survey of the methods of heat-exchange prediction. Therm Sci 19(5):1769–1789.  https://doi.org/10.2298/tsci140522036r CrossRefGoogle Scholar
  5. 5.
    Cavallini A, Censi G, Del Col D, Doretti L, Longo G, Rossetto L, Zilio C (2003) Condensation inside and outside smooth and enhanced tubes – a review of recent research. Int J Refrig 26(4):373–392.  https://doi.org/10.1016/s0140-7007(02)00150-0 CrossRefGoogle Scholar
  6. 6.
    Garcia-Valladares O (2003) Review of in-tube condensation heat transfer correlations for smooth and microfin tubes. Heat Transf Eng 24(4):6–24.  https://doi.org/10.1080/01457630304036 CrossRefGoogle Scholar
  7. 7.
    Kandlikar S, Garimella S, Li D, Colin S, King M (2005) Heat transfer and fluid flow in minichannels and microchannels, Elsevier ScienceGoogle Scholar
  8. 8.
    Dalkilic A, Wongwises S (2009) Intensive literature review of condensation inside smooth and enhanced tubes. Int J Heat Mass Transf 52(15–16):3409–3426.  https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.011 CrossRefGoogle Scholar
  9. 9.
    Dalkilic A, Aktas M, Acikgoz O, Wongwises S (2015) A Review of Recent Empirical Correlations for the Calculation of Determination of R134a’s Convective Heat Transfer Coefficient in Vertical Condensers. Int Commun Heat Mass Transf 69:41–50.  https://doi.org/10.1016/j.icheatmasstransfer.2015.10.006 CrossRefGoogle Scholar
  10. 10.
    Xiaoyong W, Xiande F, Rongrong S (2012) A comparative study of heat transfer coefficients for film condensation. Energy Sci Technol 3:1):1–1):9.  https://doi.org/10.3968/j.est.1923847920120301.152 CrossRefGoogle Scholar
  11. 11.
    Sánta R (2012) The analysis of two-phase condensation heat transfer models based on the comparison of the boundary condition. Acta Polytechnica Hungarica 9(6):167–180Google Scholar
  12. 12.
    Macdonald M (2015) Condensation of pure hydrocarbons and zeotropic mixtures in smooth horizontal tubes, Georgia Institute of TechnologyGoogle Scholar
  13. 13.
    Huang J, Zhang J, Wang L (2015) Review of vapor condensation heat and mass transfer in the presence of non-condensable gas. Appl Therm Eng 89:469–484.  https://doi.org/10.1016/j.applthermaleng.2015.06.040 CrossRefGoogle Scholar
  14. 14.
    Righetti G, Zilio C, Mancin S, Longo GA (2016) A review on in-tube two-phase heat transfer of hydro-fluoro-olefines refrigerants. Sci Technol Built Environ 22(8):1191–1225.  https://doi.org/10.1080/23744731.2016.1229528 CrossRefGoogle Scholar
  15. 15.
    Yazid MNAWM, Sidik NAC, Yahya WJ (2017) Heat and mass transfer characteristics of carbon nanotube nanofluids: A review. Renew Sust Energ Rev 80:914–941.  https://doi.org/10.1016/j.rser.2017.05.192 CrossRefGoogle Scholar
  16. 16.
    Rifert V (1988) Heat transfer and flow modes of phases in laminar film vapour condensation inside a horizontal tube. Int J Heat Mass Transf 31(3):517–523.  https://doi.org/10.1016/0017-9310(88)90033-6 CrossRefGoogle Scholar
  17. 17.
    Rifert V, Sereda V, Barabash P, Gorin V (2017) Condensation inside smooth horizontal tubes: Part 2. Improvement of heat exchange prediction. Therm Sci 21(3):1479–1489.  https://doi.org/10.2298/TSCI140815045R CrossRefGoogle Scholar
  18. 18.
    Nusselt W (1916) Die Oberflachenkondensation des Wasserdampfes. VDI-Zeitschrift 60:542–575Google Scholar
  19. 19.
    Crosser OK (1955) Condensing heat transfer within horizontal tubes. The Rice Institute, HoustonGoogle Scholar
  20. 20.
    Akers W, Deans H, Crosser O (1959) Condensing heat transfer within horizontal tubes. Сhem Eng Prog Symp Ser 55:171–176Google Scholar
  21. 21.
    Akers W, Rosson H (1960) Condensation inside a horizontal tube. In: Chem. Eng. Prog. Symp. Series. pp 145–149Google Scholar
  22. 22.
    Konsetov V (1960) Experimental investigations of the heat transfer in steam condensing in horizontal and inclined tubes (In Russian). J Heat power eng 12:67–71Google Scholar
  23. 23.
    Kutateladze S (1961) Heat transfer during film condensation of steam inside a horizontal pipe (In Russian). Problems of heat transfer and hydraulics of two-phase liquids: a digest of articles:138–156Google Scholar
  24. 24.
    Chato J (1962) Laminar condensation inside horizontal and inclined tube. ASHRAE J 4(2):52–60Google Scholar
  25. 25.
    Boyko L, Kruzhilin G (1967) Heat transfer and pressure drop during condensation of steam in a horizontal tube and in a bundle of tubes. Int J Heat Mass Transf 10(3):361–373.  https://doi.org/10.1016/0017-9310(67)90152-4 CrossRefGoogle Scholar
  26. 26.
    Volkov D (1970) Generalization of the experimental data on heat transfer in condensing of moving steam inside horizontal pipes at low and moderate velocities (In Russian). Works of CKTI 3:295–305Google Scholar
  27. 27.
    Cavallini A (1974) Zecchin R dimensionless correlation for heat transfer in forced convection condensation. In: Proceedings of the Sixth International Heat Transfer Conference. pp 309–313Google Scholar
  28. 28.
    Shah M (1979) A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf 22(4):547–556.  https://doi.org/10.1016/0017-9310(79)90058-9 CrossRefGoogle Scholar
  29. 29.
    Breber G, Palen J, Taborek J (1980) Prediction of horizontal tubeside condensation of pure components using flow regime criteria. J Heat Transf 102(3):471–476.  https://doi.org/10.1115/1.3244325 CrossRefGoogle Scholar
  30. 30.
    Soliman H (1986) The mist-annular transition during condensation and its influence on the heat transfer mechanism. Int J Multiphase Flow 12(2):277–288.  https://doi.org/10.1016/0301-9322(86)90030-3 CrossRefzbMATHGoogle Scholar
  31. 31.
    Chen S, Gerner F, Tien C (1987) General film condensation correlations. Exp Heat Transfer Int J 1(2):93–107.  https://doi.org/10.1080/08916158708946334 CrossRefGoogle Scholar
  32. 32.
    Kaushik N, Azer N (1988) A general heat transfer correlation for condensation inside internally finned tubes. ASHRAE Trans 94:261–279Google Scholar
  33. 33.
    Bivens D, Yokozeki A (1994) Heat transfer coefficients and transport properties for alternative refrigerants. In: International Refrigeration and Air Conditioning Conference, School of Mechanical Engineering. pp 299–304Google Scholar
  34. 34.
    Fujii T (1995) Enhancement to condensing heat transfer-new developments. J Enhanced Heat Transfer 2(1–2).  https://doi.org/10.1615/JEnhHeatTransf.v2.i1-2.140 CrossRefGoogle Scholar
  35. 35.
    Yu J, Koyama S, Haraguchi H, Momoki S, Ishibashi A (1996) Boiling and condensation of alternative refrigerants in a horizontal smooth tube. 九州大学機能物質科学研究所報告 9 (2):137–154Google Scholar
  36. 36.
    Tandon T, Varma H, Gupta C (1995) Heat transfer during forced convection condensation inside horizontal tube. Int J Refrig 18(3):210–214.  https://doi.org/10.1016/0140-7007(95)90316-r CrossRefGoogle Scholar
  37. 37.
    Singh A, Ohadi M, Dessiatoun S (1996) Empirical modeling of stratified-wavy flow condensation heat transfer in smooth horizontal tubes. ASHRAE Transac 102(2):596–603Google Scholar
  38. 38.
    Moser K, Webb R, Na B (1998) A new equivalent Reynolds number model for condensation in smooth tubes. J Heat Transf 120(2):410–417.  https://doi.org/10.1115/1.2824265 CrossRefGoogle Scholar
  39. 39.
    Dobson M, Chato J (1998) Condensation in smooth horizontal tubes. J Heat Transf 120(1):193–213.  https://doi.org/10.1115/1.2830043 CrossRefGoogle Scholar
  40. 40.
    Tang L, Ohadi M, Johnson A (2000) Flow Condensation in Smooth and Micro-fin Tubes with HCFC-22, HFC-134a and HFC-410 Refrigerants. Part II: Design Equations. J Enhanced Heat Transfer 7(5).  https://doi.org/10.1615/JEnhHeatTransf.v7.i5.20 CrossRefGoogle Scholar
  41. 41.
    Naulboonrueng T, Kaewon J, Wongwises S (2003) Two-phase condensation heat transfer coefficients of HFC–134a at high mass flux in smooth and micro-fin tubes. Int commun heat mass transfer 30(4):577–590.  https://doi.org/10.1016/S0735-1933(03)00086-1 CrossRefGoogle Scholar
  42. 42.
    Thome J, El Hajal J, Cavallini A (2003) Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. Int J Heat Mass Transf 46(18):3365–3387.  https://doi.org/10.1016/S0017-9310(03)00140-6 CrossRefzbMATHGoogle Scholar
  43. 43.
    El Hajal J, Thome J, Cavallini A (2003) Condensation in horizontal tubes, part 1: two-phase flow pattern map. Int J Heat Mass Transf 46(18):3349–3363.  https://doi.org/10.1016/S0017-9310(03)00139-X CrossRefzbMATHGoogle Scholar
  44. 44.
    Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C, Censi G (2006) Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. Heat transfer eng 27(8):31–38.  https://doi.org/10.1080/01457630600793970 CrossRefGoogle Scholar
  45. 45.
    Park K, Jung D, Seo T (2008) Flow condensation heat transfer characteristics of hydrocarbon refrigerants and dimethyl ether inside a horizontal plain tube. Int J Multiphase Flow 34(7):628–635.  https://doi.org/10.1016/j.ijmultiphaseflow.2008.01.008 CrossRefGoogle Scholar
  46. 46.
    Shah M (2009) An improved and extended general correlation for heat transfer during condensation in plain tubes. Hvac&R Res 15(5):889–913.  https://doi.org/10.1080/10789669.2009.10390871 CrossRefGoogle Scholar
  47. 47.
    Sapali S, Patil P (2009) Two-phase condensation heat transfer coefficients and pressure drops of R404a for different condensing temperatures in a smooth and micro-fin tube. Int J Eng Sci Technol 1(2):43–58Google Scholar
  48. 48.
    Sapali S, Patil PA (2010) Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube. Exp Thermal Fluid Sci 34(8):1133–1141.  https://doi.org/10.1016/j.expthermflusci.2010.03.013 CrossRefGoogle Scholar
  49. 49.
    Numrich R, Müller J (2010) Filmwise Condensation of Pure Vapors. VDI Heat Atlas, VDI-Gesellschaft Verfahrenstechnik und Chemieningenieurwesen, Springer, p. 905–918. doi: https://doi.org/10.1007/978-3-540-77877-6
  50. 50.
    Bohdal T, Charun H, Sikora M (2011) Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int J Heat Mass Transf 54(9–10):1963–1974.  https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.005 CrossRefGoogle Scholar
  51. 51.
    Iqbal O, Bansal P (2012) In-tube condensation heat transfer of CO2 at low temperatures in a horizontal smooth tube. Int J Refrig 35(2):270–277.  https://doi.org/10.1016/j.ijrefrig.2011.10.015 CrossRefGoogle Scholar
  52. 52.
    Balcilar M, Aroonrat K, Dalkilic A, Wongwises S (2013) A numerical correlation development study for the determination of Nusselt numbers during boiling and condensation of R134a inside smooth and corrugated tubes. Int Commun Heat Mass Transfer 48:141–148.  https://doi.org/10.1016/j.icheatmasstransfer.2013.08.012 CrossRefGoogle Scholar
  53. 53.
    Milkie JA (2014) Condensation of hydrocarbon and zeotropic hydrocarbon/refrigerant mixtures in horizontal tubes. Georgia Institute of TechnologyGoogle Scholar
  54. 54.
    Shah M (2015) A new flow pattern based general correlation for heat transfer during condensation in horizontal tubes. Proceedings of the 15th International Heat Transfer Conference IHTC-15, August 10–15, 2014, Kyoto, Japan. pp. 1–15Google Scholar
  55. 55.
    Macdonald M, Garimella S (2016) Hydrocarbon condensation in horizontal smooth tubes: Part II–Heat transfer coefficient and pressure drop modeling. Int J Heat Mass Transf 93:1248–1261.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.019 CrossRefGoogle Scholar
  56. 56.
    Zhuang X, Chen G, Zou X, Song Q, Gong M (2017) Experimental investigation on flow condensation of methane in a horizontal smooth tube. Int J Refrig 78:193–214.  https://doi.org/10.1016/j.ijrefrig.2017.03.021 CrossRefGoogle Scholar
  57. 57.
    Dorao C, Fernandino M (2017) Dominant dimensionless groups controlling heat transfer coefficient during flow condensation inside pipes. Int J Heat Mass Transf 112:465–479.  https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.104 CrossRefGoogle Scholar
  58. 58.
    Dorao C, Fernandino M (2018) Simple and general correlation for heat transfer during flow condensation inside plain pipes. Int J Heat Mass Transf 122:290–305.  https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.097 CrossRefGoogle Scholar
  59. 59.
    Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2018) Substantiation and the range of application of a new method for heat transfer prediction in condensing inside plain tubes. Energetika 64(3):146–154.  https://doi.org/10.6001/energetika.v64i3.3807 CrossRefGoogle Scholar
  60. 60.
    Camaraza-Medina Y, Hernandez-Guerrero A, Luviano-Ortiz JL, Mortensen-Carlson K, Cruz-Fonticiella OM, García-Morales OF (2019) New model for heat transfer calculation during film condensation inside pipes. Int J Heat Mass Transf 128:344–353.  https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.012 CrossRefGoogle Scholar
  61. 61.
    Yusufova V (1953) Experimental investigation of the heat transfer in condensing of benzene and toluene inside horizontal condensers (In Russian). Izvestia of the Azerbaijan Acad Sci 18:22–29Google Scholar
  62. 62.
    Gorodinskaya S (1954) Investigation of the heat transfer in condensing inside horizontal pipes (In Russian). Izvestia of the Kiev Polytechnic Institute 13:158–170Google Scholar
  63. 63.
    Boyko L (1966) Investigation of heat transfer in steam condensing inside a pipe (In Russian). Heat transfer in the elements of power plants:197–212Google Scholar
  64. 64.
    Said S (1983) Augmentation of condensation heat transfer of R-113 by internally finned tubes and twisted tape inserts. Kansas State University, ManhattanGoogle Scholar
  65. 65.
    Venkatesh K (1984) Augmentation of condensation heat transfer of R-11 by internally finned tubes. Kansas State University, ManhattanGoogle Scholar
  66. 66.
    Bae S, Maulbetsch J, Rohsenow W (1969) Refrigerant forced-convection condensation inside horizontal tubes. Massachusetts Inst. of Tech., Cambridge Heat Transfer LabGoogle Scholar
  67. 67.
    Traviss D, Baron A, Rohsenow W (1971) Forced-convection condensation inside tubes. Massachusetts Inst. of Tech., Cambridge Heat Transfer LabGoogle Scholar
  68. 68.
    Cavallini A, Censi G, Del Col D, Doretti L, Longo G, Rossetto L (2001) Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int J Refrig 24(1):73–87.  https://doi.org/10.1016/S0140-7007(00)00070-0 CrossRefGoogle Scholar
  69. 69.
    Borishansky V, Volkov D, Ivashchenko N, Krektunov O (1975) Application of thermodynamic similarity method for generalization of experimental data on film-type condensation (In Russian). Works of CKTI (131):122–138Google Scholar
  70. 70.
    Royal J (1975) Augmentation of horizontal in-tube condensation of steam. Iowa State University, AmesCrossRefGoogle Scholar
  71. 71.
    Shao D, Granryd E (2000) Flow pattern, heat transfer and pressure drop in flow condensation part I: pure and azeotropic refrigerants. HVAC&R Res 6(2):175–195.  https://doi.org/10.1080/10789669.2000.10391256 CrossRefGoogle Scholar
  72. 72.
    Huang X, Ding G, Hu H, Zhu Y, Peng H, Gao Y, Deng B (2010) Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes. Int J Refrig 33(1):158–169.  https://doi.org/10.1016/j.ijrefrig.2009.09.008 CrossRefGoogle Scholar
  73. 73.
    Park J, Vakili-Farahani F, Consolini L, Thome J (2011) Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze (E) versus R134a and R236fa. Exp Thermal Fluid Sci 35(3):442–454.  https://doi.org/10.1016/j.expthermflusci.2010.11.006 CrossRefGoogle Scholar
  74. 74.
    Ghim G, Lee J (2017) Condensation heat transfer of low GWP ORC working fluids in a horizontal smooth tube. Int J Heat Mass Transf 104:718–728.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.090 CrossRefGoogle Scholar
  75. 75.
    Kim Y, Jang J, Hrnjak P, Kim M (2009) Condensation heat transfer of carbon dioxide inside horizontal smooth and microfin tubes at low temperatures. J Heat Transf 131(2):021501.  https://doi.org/10.1115/1.2993139 CrossRefGoogle Scholar
  76. 76.
    Thome J (2003) On recent advances in modeling of two-phase flow and heat transfer. Heat Transfer Eng 24(6):46–59.  https://doi.org/10.1080/714044414 CrossRefGoogle Scholar
  77. 77.
    Lim I, Bankoff S, Tankin R, Yuen M (1981) Concurrent Steam/water Flow in a Horizontal Channel. Division of Accident Evaluation, Office of Nuclear Regulatory Research, US Nuclear Regulatory CommissionGoogle Scholar
  78. 78.
    Ferreira C, Newell T, Chato J, Nan X (2003) R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes. Int J Refrig 26(4):433–441.  https://doi.org/10.1016/S0140-7007(02)00156-1 CrossRefGoogle Scholar
  79. 79.
    Smit F, Meyer J (2002) Condensation heat transfer coefficients of the zeotropic refrigerant mixture R-22/R-142b in smooth horizonal tubes. Int J Therm Sci 41(7):625–630CrossRefGoogle Scholar
  80. 80.
    Kosky P, Staub F (1971) Local condensing heat transfer coefficients in the annular flow regime. AICHE J 17(5):1037–1043.  https://doi.org/10.1002/aic.690170505 CrossRefGoogle Scholar
  81. 81.
    Rouhani S, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Transf 13(2):383–393.  https://doi.org/10.1016/0017-9310(70)90114-6 CrossRefGoogle Scholar
  82. 82.
    Labuntsov D (1957) Heat transfer in film condensation of pure steam on vertical surfaces and horizontal tubes. Teploenergetika 4(7):72–79Google Scholar
  83. 83.
    Suliman R, Liebenberg L, Meyer J (2009) Improved flow pattern map for accurate prediction of the heat transfer coefficients during condensation of R-134a in smooth horizontal tubes and within the low-mass flux range. Int J Heat Mass Transf 52(25–26):5701–5711.  https://doi.org/10.1016/j.ijheatmasstransfer.2009.08.017 CrossRefzbMATHGoogle Scholar
  84. 84.
    Jassim E, Newell T, Chato J (2008) Prediction of two-phase condensation in horizontal tubes using probabilistic flow regime maps. Int J Heat Mass Transf 51(3–4):485–496.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.021 CrossRefzbMATHGoogle Scholar
  85. 85.
    Van Rooyen E, Christians M, Liebenberg L, Meyer J (2010) Probabilistic flow pattern-based heat transfer correlation for condensing intermittent flow of refrigerants in smooth horizontal tubes. Int J Heat Mass Transf 53(7–8):1446–1460.  https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.005 CrossRefzbMATHGoogle Scholar
  86. 86.
    Vera-García F, García-Cascales J, Corberán-Salvador J, Gonzálvez-Maciá J, Fuentes-Díaz D (2007) Assessment of condensation heat transfer correlations in the modelling of fin and tube heat exchangers. Int J Refrig 30(6):1018–1028.  https://doi.org/10.1016/j.ijrefrig.2007.01.005 CrossRefGoogle Scholar
  87. 87.
    Müller J (1992) Wärmeübergang bei der Filmkondensation und seine Einordnung in Wärme- und Stoffübertragungsvorgänge bei Filmströmungen. Fortsch Ber VDI, Reihe 3(270)Google Scholar
  88. 88.
    Agra Ö, Teke I (2012) Determination of the heat transfer coefficient during annular flow condensation in smooth horizontal tubes. J Therm Sci Technol 32(2):151–159Google Scholar
  89. 89.
    Lee H, Mudawar I, Hasan M (2013) Flow condensation in horizontal tubes. Int J Heat Mass Transf 66:31–45.  https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.010 CrossRefGoogle Scholar
  90. 90.
    Macdonald M, Garimella S (2016) Hydrocarbon condensation in horizontal smooth tubes: Part I–Measurements. Int J Heat Mass Transf 93:75–85.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.018 CrossRefGoogle Scholar
  91. 91.
    Fries S, Skusa S, Luke A (2019) Heat transfer and pressure drop of condensation of hydrocarbons. Heat Mass Transf 55(1):33–40.  https://doi.org/10.1007/s00231-018-2318-2 CrossRefGoogle Scholar
  92. 92.
    Li P, Chen J, Norris S (2018) Flow condensation heat transfer of CO 2 in a horizontal tube at low temperatures. Appl Therm Eng 130:561–570.  https://doi.org/10.1016/j.applthermaleng.2017.11.004 CrossRefGoogle Scholar
  93. 93.
    Rifert V, Gorin V, Sereda V, Treputnev V (2017) An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect. World Academy of Science, Engineering and Technology. Int J Mech Aerosp Ind Mechatronic Manuf Eng 11(8):1376–1385Google Scholar
  94. 94.
    Jeon S, Hong S, Park J, Seul K, Park G (2013) Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation. Nucl Eng Des 254:254–265.  https://doi.org/10.1016/j.nucengdes.2012.10.006 CrossRefGoogle Scholar
  95. 95.
    Jeon S, Hong S, Park J, Seul K, Park G (2013) Assessment of horizontal in-tube condensation models using MARS code. Part II: Annular flow condensation. Nucl Eng Des 262:510–524.  https://doi.org/10.1016/j.nucengdes.2013.05.014 CrossRefGoogle Scholar
  96. 96.
    Demir H, Ağra Ö, Atayılmaz ŞÖ (2009) Generalized neural network model of alternative refrigerant (R600a) inside a smooth tube. Int Commun Heat Mass Transfer 36(7):744–749.  https://doi.org/10.1016/j.icheatmasstransfer.2009.03.024 CrossRefGoogle Scholar
  97. 97.
    Balcilar M, Aroonrat K, Dalkilic A, Wongwises S (2013) A generalized numerical correlation study for the determination of pressure drop during condensation and boiling of R134a inside smooth and corrugated tubes. Int Commun Heat Mass Transfer 49:78–85.  https://doi.org/10.1016/j.icheatmasstransfer.2013.08.010 CrossRefGoogle Scholar
  98. 98.
    Martín-Valdepeñas J, Jiménez M, Martín-Fuertes F, Benitez J (2005) Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code. Heat Mass Transf 41(11):961–976.  https://doi.org/10.1007/s00231-004-0606-5 CrossRefGoogle Scholar
  99. 99.
    Noori Rahim Abadi S, Meyer J (2018) Numerical investigation into the inclination effect on conjugate pool boiling and the condensation of steam in a passive heat removal system. Int J Heat Mass Transf 122:1366–1382.  https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.093 CrossRefGoogle Scholar
  100. 100.
    Taler D (2019) Determination of сorrelations for the heat transfer coefficient on the air side using CFD simulations. Numerical Modelling and Experimental Testing of Heat Exchangers (pp. 525–542). Springer International Publishing AG. doi: https://doi.org/10.1007/978-3-319-91128-1_17 Google Scholar
  101. 101.
    Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2018) Restoration of correctness and improvement of a model for film condensation inside tubes. Bulg Chem Commun 50(K):58–69Google Scholar
  102. 102.
    Rifert V, Zadiraka V (1978) Condensation of steam inside a smooth and profiled horizontal tube (in Russian). Teploenergetika Moscow 8:77–88Google Scholar
  103. 103.
    Afroz H, Miyara A, Tsubaki K (2008) Heat transfer coefficients and pressure drops during in-tube condensation of CO2/DME mixture refrigerant. Int J Refrig 31(8):1458–1466.  https://doi.org/10.1016/j.ijrefrig.2008.02.009 CrossRefGoogle Scholar
  104. 104.
    Kinney R, Sparrow E (1970) Turbulent flow, heat transfer, and mass transfer in a tube with surface suction. J Heat Transf 92(1):117–124.  https://doi.org/10.1115/1.3449600 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”National Technical UniversityKyivUkraine

Personalised recommendations