Improving thermal response tests with wireline temperature logs to evaluate ground thermal conductivity profiles and groundwater fluxes

  • Claude Hugo Koubikana Pambou
  • Jasmin Raymond
  • Louis Lamarche


A field method was developed to assess subsurface thermal conductivity profiles and groundwater fluxes from manual temperature logs using a wired probe lowered into a U-pipe during the recovery period of a thermal response test (TRT). Temperature and depth were recorded with a wired temperature and pressure data logger, which triggers a water level rise into a U-pipe. Depth correction methods were introduced and validated using subsurface temperature at equilibrium state measured into U-pipe. Wired temperature logs from recovery period after drilling operation were used to evaluate undisturbed subsurface temperature and during a conventional TRT to assess a thermal conductivity profile with approximately 1 m vertical spatial resolution. TRT analysis was improved by combining the infinite line source equation with the temporal superposition principle and slope method. The results reveal zones of higher apparent thermal conductivity identified as fractured zones in which Darcy’s flux has been quantified using the Peclet number analysis. The average subsurface thermal conductivity inferred with this method was 1.79 W m−1 K−1, similar to 1.75 W m−1 K−1 obtained using conventional TRT analysis. The estimated Darcy’s flux in the fracture zones is 3 × 10−9 to 1 × 10−8 m s−1. This method, based on wired temperature profiling along the borehole, provides a new approach using simple equipment and available analytical solutions to obtain more information from conventional TRT analysis.


Heat pump Ground heat exchanger Thermal response test Temperature profile Wired probe Thermal conductivity profile Thermostratigraphic log 



intercept of linear approximation [°C].


specific heat capacity [J Kg−3 K−1].


volumetric heat capacity [J m−3 K−1].


depth [m].


Fourier’s number [−].


gravitational acceleration constant [m s−2].


length [m].


slope of linear graphic approximation [°C s−1].


pressure [kg m−1 s−2].


Peclet Number [−].


fitting parameter [−].


heat injection rate [W].


heat injection rate per unit length of borehole [W m−1].


fluid flow rate [m3 s−1].


radius [m].


thermal resistance [m K W−1].


temperature [°C].


time [s].


integration variable [−].


volume [m3].


depth [m].

Greek symbol


thermal diffusivity [m2 s−1].


thermal conductivity [W m−1 K−1].


density [kg m−3].


Euler’s constant [0. 5772].




Darcy flux [m s−1].









tagline used to lower the probe.




down-water circulation.


current time step.


previous time step.


inlet pipe.


initial or undisturbed.


end of heat injection.


outlet pipe.


fitting parameter to assume asymmetric water temperature evolution in GHE.


U-tube for water circulation into GHE.




up-water circulation.








This project was carried out with financial support from the Natural Sciences and Engineering Research Council of Canada and in-kind contributions from Forage Géothermique and Énergie-Stat, which are kindly acknowledged. Thanks also go to Jean-Marc Ballard and the students at INRS who helped during the fieldwork.


  1. 1.
    Duan X, Naterer GF (2008) Ground thermal response to heat conduction in a power transmission tower foundation. Heat Mass Transf 44:547CrossRefGoogle Scholar
  2. 2.
    Loveridge F, Holmes G, Powrie W, Roberts T (2013) Thermal response test through the chalk aquifer in London, UK. Proceedings of the Institute of civil engineering, Geotechnical Engineering. Issue GE2. (166) 197–210Google Scholar
  3. 3.
    Gehlin S, Spitler JD (2015) Thermal response testing for ground source heat pump systems-An historical review. Renew Sust Energ Rev 50:1125–1137CrossRefGoogle Scholar
  4. 4.
    Kavanaugh SP (2010) Determining thermal resistance of ground heat exchangers. ASHRAE Journal, (8) 1–4. Available at
  5. 5.
    Langlois A (2010) Pompes à chaleur géothermique utilisant des banques à matériaux à changement de phases. Master Thesis, École Polytechnique de Montréal, Montréal, CanadaGoogle Scholar
  6. 6.
    Gehlin S, Nordell B (2003) Determining undisturbed ground temperature for thermal response test. ASHRAE Trans 109:151–156Google Scholar
  7. 7.
    Gehlin S (2002) Thermal response test – Method development and evaluation. Ph.D. thesis, Luleå University of Technology, Division of Water Resources Engineering, Department of Environmental Engineering, Luleå, SwedenGoogle Scholar
  8. 8.
    Fujii H, Okubo H, Itoi R (2006) Thermal response tests using optical fiber thermometers. GRC Trans 30:545–551Google Scholar
  9. 9.
    Fujii H, Hiroaki O, Keita N, Ryuichi I, Kunio O, Kazuo S (2009) An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers. Geothermics 4:399–406CrossRefGoogle Scholar
  10. 10.
    Sakata Y, Katsura T, Nagano K, Ishizuka M (2017) Field Analysis of Stepwise Effective Thermal Conductivity along a Borehole Heat Exchanger under Artificial Conditions of Groundwater Flow. Hydrology 4:21–41CrossRefGoogle Scholar
  11. 11.
    Hakala P, Martinkauppi A, Martinkauppi I, Leppaharju N, Korhonen K (2014) Evaluation of the Distributed Thermal Response Test (DTRT) Nupurinkartano as a case study. Report of Investigation 211. Geological Survey of Finland, Espoo, FinlandGoogle Scholar
  12. 12.
    Rohner E, Rybach L, Schärli U (2005) A new, small, wireless instrument to infer ground thermal conductivity in-situ for borehole heat exchanger design. Proceedings of the World Geothermal Congress. Antalya, TurkeyGoogle Scholar
  13. 13.
    Martos J, Montero Á, Torres J (2011) Novel wireless sensor system for dynamic characterization of borehole heat exchangers. Sensors 11:7082–7094CrossRefGoogle Scholar
  14. 14.
    Raymond J, Lamarche L, Malo M (2015) Field demonstration of a first thermal response test with a low power source. Appl Energy 147:30–39CrossRefGoogle Scholar
  15. 15.
    Kurevija T, Strpić K, Koščak-Kolin S (2018) Applying the Petroleum Pressure Buildup Well Test Procedure on Thermal Response Test-A Novel Method for Analyzing Temperature Recovery Period. Energies 11:366–386CrossRefGoogle Scholar
  16. 16.
    Raymond J, Lamarche L, Malo M (2016) Extending thermal response test assessments with inverse numerical modeling of temperature profiles measured in ground heat exchangers. Renew Energy 99:614–621CrossRefGoogle Scholar
  17. 17.
    Liebel T H (2011) Influence of Groundwater on Measurements of Thermal properties in Fractured Aquifers. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, NorwayGoogle Scholar
  18. 18.
    Pehme PE, Greenhouse JP, Parker BL (2007) The Active Line Source Temperature Logging Technique and its Application in fractured Rock. Hydrogeol J Environ Eng Geophys 4:307–322CrossRefGoogle Scholar
  19. 19.
    Pehme PE, Parker BL, Cherry JA, Molson JW, Greenhouse JP (2013) Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes. J Hydrol 484:1–15CrossRefGoogle Scholar
  20. 20.
    Nusier OK, Abu-Hamdeh NH (2003) Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf 39:119–123CrossRefGoogle Scholar
  21. 21.
    Raymond J, Therrien R, Gosselin L (2011b) Borehole temperature evolution during thermal response tests. Geothermics 40:69–78CrossRefGoogle Scholar
  22. 22.
    Globensky Y (1987) Géologie des Basses Terres du Saint-Laurent, Québec. Internal report MM 85–02, Ministère des Richesses naturelles du Québec, Québec, CanadaGoogle Scholar
  23. 23.
    ASHRAE (2015) Geothermal Energy In ASHRAE (ed) ASHRAE handbook-HVAC applications, chapter 34. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Atlanta, USAGoogle Scholar
  24. 24.
    Kavanaugh S (2016). RESEARCH SUMMARY - ASHRAE 1118: “Methods for determining Soil and Rock Formation Thermal Properties from Field". (1118) 1–4. Available at
  25. 25.
    Carslaw HS, Jaeger JC (1959) Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford, UKzbMATHGoogle Scholar
  26. 26.
    Project GEOPLASMA-CE (2017) Joint report on chosen approaches and methods for calibration. D.T3.5.1 version 1, Interreg, Central Europ. Available at
  27. 27.
    Raymond J, Therien R, Gosselin L, Lefebvre R (2011a) A review of thermal response test analysis using pumping test concepts. Ground Water 49:932–945CrossRefGoogle Scholar
  28. 28.
    ADEME (2015) Cahier des charges pour la réalisation d’un test de réponse thermique de terrain (TRT), pour la réalisation d’une opération de PAC sur champ de sondes géothermiques verticales (CSGV) dans les secteurs résidentiel collectif, tertiaire ou industriel. Collection des cahiers des charges d’aide à la décision / Diagademe, Angers, France. Available at
  29. 29.
    Waples DW, Waples JS (2004) A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals and Subsurface Fluids. Part 1: Minerals and nonporous rocks. Nat Resour Res 13:97–122CrossRefGoogle Scholar
  30. 30.
    Marcotte D, Pasquier P (2008) On the estimation of thermal resistance in borehole thermal conductivity test. Renew Energy 33:2407–2415CrossRefGoogle Scholar
  31. 31.
    Beier RA (2011) Vertical temperature profile in ground heat exchanger during in-situ test. Renew Energy 36:1578–1587CrossRefGoogle Scholar
  32. 32.
    Vidal J, Genter A, Chopin F (2017) Permeable fracture zones in the hard rocks of the geothermal reservoir at Rittershoffen, France. J Geophys Res 122:4864–4887CrossRefGoogle Scholar
  33. 33.
    Lehr C, Sass I (2014) Thermo-optical parameter acquisition and characterization of geologic properties: a 400-m deep BHE in a karstic alpine marble aquifer. Environ Earth Sci 72:1403–1419CrossRefGoogle Scholar
  34. 34.
    Lehr C (2015) Characterization of Geologic and Geophysical Environments Using GRT Data. Scope of Enhanced Data Interpretation. Proceedings World Geothermal Congress, Melbourne, AustraliaGoogle Scholar
  35. 35.
    Wagner V, Bayer P, Bisch G, Keubert M, Blum P (2014) Hydraulic characterization of aquifers by thermal response testing: Validation by large-scale tank and field experiments. Water Resour Res 50:1–15CrossRefGoogle Scholar
  36. 36.
    Verdoya M, Imitazione G, Chiozzi P, Armadillo E, Pasqua C (2015) Interpretation of Thermal Response Tests in Borehole Heat Exchangers Affected by Advection. Proceedings World Geothermal Congress, Melbourne, AustraliaGoogle Scholar
  37. 37.
    Acuña J (2010) Improvements of U-pipe Borehole Heat Exchangers Licentiate Thesis KTH School of Industrial Engineering and Management, Division of Applied Thermodynamic and Refrigeration. SE-100 44, Stockholm, SwedenGoogle Scholar
  38. 38.
    Zervantonakis I, Reuss M (2006) Quality requirements of a thermal response test. Proceedings of the 10th International Conference on Thermal Energy Storage, Pomonoma, USAGoogle Scholar
  39. 39.
    Javed S, Spitler JD, Fahlén P (2011) An Experimental Investigation of the Accuracy of Thermal Response Tests Used to Measure Ground Thermal Properties. ASHRAE Trans 117:13–21Google Scholar
  40. 40.
    Huber H, Arslan U (2012) Geothermal field tests with forced groundwater flow. Proceedings of the Thirty-Seventh Workshop on Geothermal Reservoir Engineering. SGP-TR-194, Stanford University, StanfordGoogle Scholar
  41. 41.
    Pahud R (2001) Étude pilote du stockage diffusif des bâtiments du Centre D4 de la Suva Root à Lucerne: études de 2 tests de réponse thermique et intégration du stockage diffusif dans le système. Internal report, Office Fédéral de l’Énergie, Lausanne, SuisseGoogle Scholar
  42. 42.
    Ballard J-M, Koubikana P C H, Raymond J (2016) Développement des tests de réponse thermique automatisés et vérification de la performance d’un forage géothermique d’un diamètre de 4,5 po. Internal report 1601, Institut national de la recherche scientifique, Québec, CanadaGoogle Scholar
  43. 43.
    GSHP (2011) Closed-loop Vertical Borehole Design. In Design, Installation & Materials Standard Issue 1.0. Ground Source Heat Pump Association, National Energy Centre, Milton Keynes, UKGoogle Scholar
  44. 44.
    Acuña J, Palm B (2011) Distributed temperature measurements on a multi-pipe coaxial borehole heat exchanger. 10th IEA Heat Pump Conference, Tokyo, JapanGoogle Scholar
  45. 45.
    Lanini S, Nguyen D (2009) Caractérisation de l'hétérogénéité verticale des propriétés thermophysiques du sous-sol par test de réponse thermique. Projet SOLARGEOTHERM. Bureau de recherches géologiques et minières, Montpellier, FranceGoogle Scholar
  46. 46.
    Soldo V, Lepoša L, Boban L, Borović S (2015) Implementation of the Distributed Thermal Response Test at Characteristic Geological Regions throughout Croatia. Proceedings World Geothermal Congress, Melbourne, AustraliaGoogle Scholar
  47. 47.
    Boban L, Soldo V, Stošić J, Filipović E, Tremac F (2018) Ground Thermal Response and Recovery after Heat Injection: Experimental Investigation. Transactions of FAMENA , XLII- Special issue. (42) SI-1Google Scholar
  48. 48.
    Raymond J, Therrien R, Gosselin L, Lefebvre R (2011c) Numerical analysis of thermal response tests with a groundwater flow and heat transfer model. Renew Energy 1:315–324Google Scholar
  49. 49.
    Choi JC, Park J, Lee SR (2013) Numerical Evaluation of the effects of groundwater flow on borehole heat exchanger arrays. Renew Energy 52:230–240Google Scholar
  50. 50.
    Raymond J, Lamarche L (2013) Simulation of thermal response tests in a layered subsurface. Appl Energy 109:293–301Google Scholar
  51. 51.
    Yoshioka M, Takakura S, Uchida Y (2017) Estimation of groundwater flow from temperature monitoring in a borehole heat exchanger during a thermal response test. Hydrogeol J:1701–1720Google Scholar
  52. 52.
    Sundberg J, Back P-E, Ländell M, Sundberg A (2009) Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar. SKB Internal Report, GEO INNOVA AB, Stockholm, SwedenGoogle Scholar
  53. 53.
    Wagner V, Bayer P, Kübert M, Blum P (2012) Numerical sensitivity study of thermal response tests. Renew Energy 41:245–253Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut national de la recherche scientifique, Centre Eau Terre EnvrionnementQuébecCanada
  2. 2.École de Technologie Supérieure, Département de génie mécaniqueMontréalCanada

Personalised recommendations