Advertisement

A benchmark test model for the validation of the CFD simulations to predict the distribution of gaseous emissions in the indoor environment

  • Umer Afzal
  • Clemens Merten
  • Mohammad Aleysa
Original
  • 35 Downloads

Abstract

The CFD investigations of distribution of emissions usually lack the validation aspect. This paper presents a benchmark test model which could be used as an effective and adequate validation tool for the CFD studies involving the different investigations of distribution of emissions in the indoor environment. The experiments were conducted using the full scale experimental test room. The time-dependent concentrations of propane and carbon dioxide at different locations inside the room were measured by flame ionization detectors and infrared photometers respectively. The Reynolds Averaged Navier Stokes equations of continuity, momentum, turbulence model (k-epsilon) and concentration were solved using ANSYS CFX 15.0. The simulation results and the experimental results were found to be in good agreement.

Notes

Acknowledgements

The financial assistance provided by German Academic Exchange Service (DAAD) and Higher Education Commission Pakistan is gratefully acknowledged.

References

  1. 1.
    Kirchner, S, Maupetit F, Quenard D, Rouxel P, Giraud D (1995) Characterization of adsorption/desorption of volatile organic compounds in indoor surface materials. Proc Heal Build, Milano, ItalyGoogle Scholar
  2. 2.
    Yoshida T, Matsunaga I, Tomioka K, Kumagai S (2006) Interior air pollution in automotive cabins by volatile organic compounds diffusing from interior materials: I. survey of 101 types of Japanese domestically produced cars for private use. Indoor Built Environ 15:425–444CrossRefGoogle Scholar
  3. 3.
    Air Quality Sciences, Inc (2006) Indoor air quality hazards of new carsGoogle Scholar
  4. 4.
    Nourbakhsh H, Mowla D, Esmaeilzadeh F (2013) Predicting the three dimensional distribution of gas pollutants for industrial-type geometries in the south pars gas complex using computational fluid dynamics. Ind Eng Chem Res 52:6559–6570CrossRefGoogle Scholar
  5. 5.
    Wu Y, Yu E, Xu Y (2007) Simulation and analysis of indoor gas leakage. Proc IBPSA Conf, Beijing, China: 3–6Google Scholar
  6. 6.
    Gavelli F, Davis SG, Hansen OR (2010) A modern tool for the investigation of indoor flammable gas migration. ISFI Meeting, Hyattsville, USAGoogle Scholar
  7. 7.
    Barley CD, Gawlik K, Ohi J, Hewett R (2007) Analysis of buoyancy-driven ventilation of hydrogen from buildings. 2nd Int Conf Hydro Saf, San Sebastian, SpainGoogle Scholar
  8. 8.
    Siddiqui M, Jayanti S, Swaminathan T (2012) CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation. J Hazard Mater 209-210:177–185CrossRefGoogle Scholar
  9. 9.
    Muharam Y, Septian H (2013) Simulation of gas leakage in a gas utilization system in household sector. Int J Technol 3:224–231CrossRefGoogle Scholar
  10. 10.
    Nagaosa RS (2014) A new numerical formulation of gas leakage and spread into a residential space in terms of hazard analysis. J Hazard Mater 271:266–274CrossRefGoogle Scholar
  11. 11.
    Murakami S, Kato S, Ito K (1998) Coupled analysis of VOCs emission and diffusion in a ventilated room by CFD. EPIC, Lyon, France: 19–21Google Scholar
  12. 12.
    Murakami S, Kato S, Ito K, Yamamoto A, Kondo Y, Fujimura J-I (2001) Chemical pollutants distribution in a room based on CFD simulation coupled with emission/sorption analysis. ASHRAE TransGoogle Scholar
  13. 13.
    Murakami S, Kato S, Ito K, Zhu Q (2003) Modeling and CFD prediction for diffusion and adsorption within room with various adsorption isotherms. Indoor Air 13:20–27CrossRefGoogle Scholar
  14. 14.
    Kim CN, Choi WH, Choung SJ, Park C-H, Kim DS (2002) Efficient ventilation of VOC spread in a small-scale painting process. Build Environ: 1321–1328Google Scholar
  15. 15.
    Deng B, Kim CN (2004) A new CFD model for VOC emission based on the general adsorption isotherm. JSME Int J 47(2):396–402CrossRefGoogle Scholar
  16. 16.
    Deng B, Kim CN, Zhang F (2007) Numerical simulation of VOCs distribution in a room with a new carpet. Heat Mass Transf 43:975–983CrossRefGoogle Scholar
  17. 17.
    Deng B, Kim CN (2007) CFD simulation of VOCs concentrations in a resident building with new carpet under different ventilation strategies. Build Environ 42:297–303CrossRefGoogle Scholar
  18. 18.
    Spengler C (2012) Experimentelle und numerische Ermittlung von Verdunstungsemissionen im Luftansaugsystem von Motoren. Logos Verlag Berlin GmbH, GermanyGoogle Scholar
  19. 19.
    Spengler C, Merten C, Pfeiffer F (2010) Measuring method and simulation model to determine the spatial and temporal distribution of evaporative emissions in the air intake system of Otto-engines. Proceedings of 7th European Congress of Chemical Engineering & 19th International Congress of Chemical and Process Engineering CHISA, Prague, TschechienGoogle Scholar
  20. 20.
    Spengler C, Merten C (2010) Messverfahren und Simulationsmodell zur Ermittlung der zeitlichen und örtlichen Verteilung der Verdunstungsemissionen im Luftansaugsystem von Ottomotoren. Proceedings of ANSYS Conference & 28th CADFEM Users' Meeting, Aachen, DeutschlandGoogle Scholar
  21. 21.
    Spengler C, Merten C (2011) Simulation of the temporal and spatial distribution of evaporative emissions inside the air-intake system of Otto-engines. Institut für Chemische Verfahrenstechnik, Universität Stuttgart, Deutschland, Technischer BerichtGoogle Scholar
  22. 22.
    ANSYS, Inc (2013) DesignModeler User's Guide. Canonsburg, PA USAGoogle Scholar
  23. 23.
    ANSYS, Inc (2013) ANSYS meshing User's guide. Canonsburg, PA USAGoogle Scholar
  24. 24.
    ANSYS, Inc (2013) ANSYS CFX-solver theory guide. Canonsburg, PA USAGoogle Scholar
  25. 25.
    ANSYS, Inc (2013) ANSYS CFX-Solver Modeling Guide. Canonsburg, PA USAGoogle Scholar
  26. 26.
    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289CrossRefGoogle Scholar
  27. 27.
    Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics - the finite volume method, Longman Scientific & TechnicalGoogle Scholar
  28. 28.
    Matsunaga N, Hori M, Nagashima A (2007) Gaseous diffusion coefficients of propane and propylene into air, nitrogen and oxygen. Netsu Bussei 21(3):143–148CrossRefGoogle Scholar
  29. 29.
    Marrero TR, Mason EA (1972) Gaseous diffusion coefficients. Phys Chem Ref Data 1Google Scholar
  30. 30.
    National Institute of Standards and Technology (2007) NIST reference fluid thermodynamic and transport properties - REFPROP, Boulder, Colorado USAGoogle Scholar
  31. 31.
    SK-Elektronik GmbH (2015) [Online]. Available: http://sk-elektronik.biz. [Accessed 15 Ocotber 2015]
  32. 32.
    SK-Elektronik GmbH Data Sheet: Thermo-FID TGGoogle Scholar
  33. 33.
    ABB Automation GmbH (2015) [Online]. Available: http://new.abb.com/de. [Accessed 15 October 2015]
  34. 34.
    ABB (2006) EasyLine EL3000 Series Data SheetGoogle Scholar
  35. 35.
    Halstrup-Walcher (2015) [Online]. Available: https://www.halstrup-walcher.de/en/index.php. [Accessed 10 October 2015]
  36. 36.
    Halstrup-Walcher (2015) Instruction manual for P26 differential pressure transducer, GermanyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Chemical Process EngineeringUniversity of StuttgartStuttgartGermany
  2. 2.Department of Chemical EngineeringUniversity of Engineering and TechnologyLahorePakistan
  3. 3.Research Group Combustion SystemsFraunhofer Institute of Building PhysicsStuttgartGermany

Personalised recommendations