Skip to main content
Log in

Influence of liquid–solid intermolecular force on levitation of impacting nanodroplet

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

When droplets impact on a heated wall, they can levitate owing to the vapor stream generated by the droplet evaporation. This phenomenon is called the Leidenfrost effect, and the vapor layer prevents heat transfer between the droplet and heated wall. In this study, we investigated the influence of the intermolecular force between liquid and solid molecules on the levitating phenomenon, which is caused by heat transfer, for nanodroplets. We used a molecular dynamics (MD) simulation to evaluate the detailed behavior of droplet levitation and investigated the temperature field of the impacting droplet. We found that the droplet levitation was likely to occur at lower temperature when the intermolecular force was stronger. In addition, when the intermolecular force was strong enough, the liquid molecules stayed on the heated wall and an adsorption layer was formed. This adsorption layer exceeded the critical temperature of the liquid molecules, and the existence of the adsorption layer significantly affected the onset of the droplet levitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liang G, Mudawar I (2017) Review of spray cooling–part 1 Single-phase and nucleate boiling regimes, and critical heat flux. Int J Heat Mass Transfer 115:1174–1205

    Article  Google Scholar 

  2. Liang G, Mudawar I (2017) Review of spray cooling–part 2 High temperature boiling regimes and quenching applications. Int J Heat Mass Transfer 115:1206–1222

    Article  Google Scholar 

  3. Mehdizadeh NZ, Chandra S (2006) Boiling during high-velocity impact of water droplets on a hot stainless steel surface. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. The royal society, vol 462, pp 3115–3131

  4. Quéré D (2013) Leidenfrost dynamics. Ann Rev Fluid Mech 45:197–215

    Article  MathSciNet  MATH  Google Scholar 

  5. Ok JT, Lopez-Ona E, Nikitopoulos DE, Wong H, Park S (2011) Propulsion of droplets on micro-and sub-micron ratchet surfaces in the leidenfrost temperature regime. Microfluid Nanofluid 10(5):1045–1054

    Article  Google Scholar 

  6. Kruse C, Somanas I, Anderson T, Wilson C, Zuhlke C, Alexander D, Gogos G, Ndao S (2015) Self-propelled droplets on heated surfaces with angled self-assembled micro/nanostructures. Microfluid Nanofluid 18 (5-6):1417–1424

    Article  Google Scholar 

  7. Bernardin JD, Stebbins CJ, Mudawar I (1997) Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Int J Heat Mass Transfer 40(2):247–267

    Article  Google Scholar 

  8. Qiao YM, Chandra S (1997) Experiments on adding a surfactant to water drops boiling on a hot surface. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. The royal society, vol 453, pp 673–689

  9. Tran T, Staat HJJ, Prosperetti A, Sun C, Lohse D (2012) Drop impact on superheated surfaces. Phys Rev Lett 108(3):036101

    Article  Google Scholar 

  10. Tran T, Staat HJJ, Susarrey-Arce A, Foertsch TC, van Houselt A, Gardeniers HJGE, Prosperetti A, Lohse D, Sun C (2013) Droplet impact on superheated micro-structured surfaces. Soft Matter 9(12):3272–3282

    Article  Google Scholar 

  11. Shirota M, van Limbeek MAJ, Sun Chao, Prosperetti A, Lohse D (2016) Dynamic leidenfrost effect: relevant time and length scales. Phys Rev Lett 116(6):064501

    Article  Google Scholar 

  12. Kim H, Truong B, Buongiorno J, Hu L-W (2011) On the effect of surface roughness height, wettability, and nanoporosity on leidenfrost phenomena. Appl Phys Lett 98(8):083121

    Article  Google Scholar 

  13. Nair H, Staat HJJ, Tran T, van Houselt A, Prosperetti A, Lohse D, Sun C (2014) The leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matter 10(13):2102–2109

    Article  Google Scholar 

  14. del Cerro DA, Marin AG, Roömer GRBE, Pathiraj B, Lohse D, Huis in ’t Veld AJ (2012) Leidenfrost point reduction on micropatterned metallic surfaces. Langmuir 28(42):15106–15110

    Article  Google Scholar 

  15. Clavijo CE, Crockett J, Maynes D (2017) Hydrodynamics of droplet impingement on hot surfaces of varying wettability. Int J Heat Mass Transfer 108:1714–1726

    Article  Google Scholar 

  16. Kwon H-m, Bird JC, Varanasi KK (2013) Increasing leidenfrost point using micro-nano hierarchical surface structures. Appl Phys Lett 103(20):201601

    Article  Google Scholar 

  17. Toghraie Semiromi D, Azimian AR (2011) Molecular dynamics simulation of nonodroplets with the modified lennard-jones potential function. Heat Mass Transf 47(5):579–588

    Article  Google Scholar 

  18. Zhang J, Leroy F, Müller-Plathe F (2013) Evaporation of nanodroplets on heated substrates: a molecular dynamics simulation study. Langmuir 29(31):9770–9782

    Article  Google Scholar 

  19. Shi B, Dhir VK (2009) Molecular dynamics simulation of the contact angle of liquids on solid surfaces. J Chem Phys 130(3):034705

    Article  Google Scholar 

  20. Horsch M, Heitzig M, Dan C, Harting J, Hasse H, Vrabec J (2010) Contact angle dependence on the fluid-wall dispersive energy. Langmuir 26(13):10913–10917

    Article  Google Scholar 

  21. Nishida S, Surblys D, Yamaguchi Y, Kuroda K, Kagawa M, Nakajima T, Fujimura H (2014) Molecular dynamics analysis of multiphase interfaces based on in situ extraction of the pressure distribution of a liquid droplet on a solid surface. J Chem Phys 140(7):074707

    Article  Google Scholar 

  22. Yaguchi H, Yano T, Fujikawa S (2010) Molecular dynamics study of vapor-liquid equilibrium state of an argon nanodroplet and its vapor. J Fluid Sci Technol 5(2):180–191

    Article  Google Scholar 

  23. Yi P, Poulikakos D, Walther J, Yadigaroglu G (2002) Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int J Heat Mass Transfer 45(10):2087–2100

    Article  MATH  Google Scholar 

  24. Zhang W, Yu T, Fan J, Sun W, Cao Z (2016) Droplet impact behavior on heated micro-patterned surfaces. J Appl Phys 119(11):114901

    Article  Google Scholar 

  25. Sedighi N, Murad S, Aggarwal SK (2010) Molecular dynamics simulations of nanodroplet spreading on solid surfaces, effect of droplet size. Fluid Dyn Res 42(3):035501

    Article  MATH  Google Scholar 

  26. Kobayashi K, Konno K, Yaguchi H, Fujii H, Sanada T, Watanabe M (2016) Early stage of nanodroplet impact on solid wall. Phys Fluids 28(3):032002

    Article  Google Scholar 

  27. Morshed AKMM, Paul TC, Khan JA (2011) Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study. Appl Phys A 105(2):445–451

    Article  Google Scholar 

  28. Zhang S, Hao F, Chen H, Yuan W, Tang Y, Xi C (2017) Molecular dynamics simulation on explosive boiling of liquid argon film on copper nanochannels. Appl Therm Eng 113:208–214

    Article  Google Scholar 

  29. Nagayama G, Tsuruta T, Cheng P (2006) Molecular dynamics simulation on bubble formation in a nanochannel. Int J Heat Mass Transfer 49(23):4437–4443

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Kazuki Konno and Mr. Syohei Furuya for their contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumichi Kobayashi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: During typesetting of the article, Figure 7 was changed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabe, H., Kobayashi, K., Yaguchi, H. et al. Influence of liquid–solid intermolecular force on levitation of impacting nanodroplet. Heat Mass Transfer 55, 993–1003 (2019). https://doi.org/10.1007/s00231-018-2474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2474-4

Keywords

Navigation