Advertisement

Heat and Mass Transfer

, Volume 55, Issue 2, pp 293–298 | Cite as

Effect of air intake temperature on drying time of unhulled rice using a fluidized bed dryer

  • S. SyahrulEmail author
  • M. Mirmanto
  • Y. Hartawan
  • S. Sukmawaty
Original
  • 64 Downloads

Abstract

Rice is one of the important food crops in Indonesia. It is known as a staple food of Indonesian society. The consumption patterns of rice are slowly but surely increase with increasing income, education and access to information. Increasing demand for rice in the country reaches 1.6% per year. One of the problems that arise in the process of rice production is the drying process. Generally, the unhulled rice drying process in Indonesia is carried out directly in the sun. This method has many limitations. In this study, the drying method used is a fluidized bed. The purpose of this study is to determine the effect of the intake air temperature and unhulled rice mass on drying time. The intake air temperatures used were 40, 45, 50 °C. The results show that the fastest drying process to obtain the final moisture content of 13.1% from the initial moisture content of about 22% is achieved using the intake air temperature of 50 °C. The drying process takes about 40 min; however, the increased drying process speed is not linearly with the increase in the intake air temperature.

Nomenclature

A

Cross-sectional area (m2)

Cp

Heat specific (J/kgK)

Cpu

Air heat specific (J/kg°C)

dp

Particle diameter (m)

εmf

Porosity

E

Energy (J)

E1

Sensible heat (J)

E2

Water sensible heat (J)

E3

Water latent heat (J)

Eu

Energy supplied to the fluidized bed (J)

hfg

Energy of evaporation (J/kg)

KAi

Initial moisture content (%)

mkp

Mass of dry product (kg)

mt

Total mass of product (kg)

mw

Mass of the water (kg)

Tfp

Final temperature of the product (°C)

Tip

Initial temperature of the product (°C)

Umf

Minimum velocity of fluidization (m/s)

V

Velocity (m/s)

Vu

Bed volume (m3)

Vp

Particle volume (m3)

Volume (m3)

\( \overset{\cdot }{\forall } \)

Volumetric rate (m3/s)

Δt

Drying time (s)

ρp

Particle density (kg/m3)

ρu

Air density (kg/m3)

η

Efficiency

Ti

Inlet air temperature (°C)

To

Outlet air temperature (°C)

Notes

Acknowledgments

The author would like to acknowledge the Ministry of Research, Technology and Higher Education of Indonesia for the funding through a research grant 2017 and 2018.

References

  1. 1.
    Sidik M (2006) Prospect of rice production and food security in East Asia, di dalam peningkatan daya saing beras nasional melalui perbaikan kualitas. Loka karya Nasional, Kerjasama Perum BULOG dengan FATETA IPB, JakartaGoogle Scholar
  2. 2.
    Daulay SB (2005) Pengeringan padi (metode dan peralatan). JurusanTeknologi Pertanian Fakultas Pertanian Universitas Sumatra UtaraGoogle Scholar
  3. 3.
    Djaeni M, Figiarto R, Ghalfani SL (2012) Peningkatan kualitas gabah dengan proses pengeringan menggunakan zeloit alam pada unggun terfluidasi. Jurnal Teknologi Kimia dan Industri 1(1):206–212Google Scholar
  4. 4.
    Fudholi A, Othman MY, Ruslan MH, Sopian K (2013) Drying of Malaysian Capsicum annuum L. (red chili) dried by open and solar drying. Int J Photoenergy:1–9Google Scholar
  5. 5.
    Palled V, Desai SR, Anantachar M (2012) Performance evaluation of solar tunnel dryer for chilly drying. Karnataka Journal of Agricultural Science 25(4):472–474Google Scholar
  6. 6.
    Herawan D (1992) Uji percontohan (pilot testing) pengering cabe merah (capsicum annuum L) tipe konveksi bebas untuk pengusaha tingkat pedesaan. Skripsi, FTP, IPB, BogorGoogle Scholar
  7. 7.
    Mirmanto M, Sulistyowati ED, Okariawan IDK (2016) Effect of radiator type on dryer room temperature distribution and heat transfer rate. JP Journal of Heat and Mass Transfer 13(4):512–532CrossRefGoogle Scholar
  8. 8.
    Mirmanto M, Syahrul S, Sulistyowati ED, Okariawan IDK (2017) Effect of inlet temperature and ventilation on heat transfer rate and water content removal of red chili. J Mech Sci Technol 31(3):1531–1537CrossRefGoogle Scholar
  9. 9.
    Mirmanto M, Sulistyowati ED, Okariawan IDK (2016) Effect of radiator position and mass flux on dryer room heat transfer rate. Results in Physics 6:139–144CrossRefGoogle Scholar
  10. 10.
    Syahrul S, Hamdullahpur F, Dincer I (2002) Thermal analysis in fluidized bed drying of moist particles. Appl Therm Eng 22:1763–1775CrossRefGoogle Scholar
  11. 11.
    Arifianto B, Indarto (2006) Studi karakteristik fluidisasi dan aliran dua fase padat-gas (pasir besi-udara) pada pipa lurus vertikel. Media Teknik 2Google Scholar
  12. 12.
    Vistanty H (2010) Pengering pasta susu kedelai menggunakan pengering unggun terfluidakan partikel inert. Magister Teknik Kimia Program Pasca Sarjana Universitas Diponegoro, SemarangGoogle Scholar
  13. 13.
    Hargono DM, Buchori L (2012) Karakteristik proses pengering jagung dengan metode mixed-adsorption drying menggunakan zeolit pada unggun terfluidisasi. Reaktor 14:33–38CrossRefGoogle Scholar
  14. 14.
    Widjanarko A, Ridwan, Djaeni M, Ratnawati (2012) Penggunaan zeolite sintetis dalam pengeringan gabah dengan proses fluidisasi indirect contatct. Jurnal Teknologi Kimia dan Industri 2(2):103–110Google Scholar
  15. 15.
    Graciafernandy MA, Ratnawati, Buchori L (2012) Pengaruh suhu udara pengering dan komposisi zeolit 3a terhadap lama waktu pengeringan gabah pada fluidized bed dryer. Momentum 8(2):6–10Google Scholar
  16. 16.
    Fatchurrozi (2011) Analisis desain fungsional dan kondisilingkungan mikro pada gudang beras:studi kasus gudang bulog dramaga – Bogor. Skripsi, Institut Pertanian BogorGoogle Scholar
  17. 17.
    Soerjandoko RNE (2010) Teknik pengujian mutu beras skala laboratorium. Balai Besar Penelitian Tanaman Padi, Buletin Teknik Pertanian 15(2):44–47Google Scholar
  18. 18.
    Mahadi (2007) Model system dan analisa pengering produk makanan. USU Repository, Universitas Sumatra UtaraGoogle Scholar
  19. 19.
    Yahya M (2015) Kajian karakteristik pengering fluidisasi terintegrasi dengan tungku biomassa untuk pengering padi. Jurnal Teknik Mesin 5(2):65–71MathSciNetGoogle Scholar
  20. 20.
    Hasibuan R (2005) Proses pengeringan. Fakultas Teknik Universitas Sumatra Utara, Program Studi Teknik KimiaGoogle Scholar
  21. 21.
    Tanggasari D (2014) Sifat teknik dan karakteristik pengering biji jagung (Zea mays L.) pada alat pengering fluidized bed. Fakultas Teknologi Pangan dan Agroindustri Universitas MataramGoogle Scholar
  22. 22.
    Ardani RK, Pradana RN, Nurtono T, Winardi S (2013) Review pengaruh hidrodinamika pada fluidized bed dryer. Jurnal Teknik Pomits 2(3):2Google Scholar
  23. 23.
    Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Howard Brenner, Affiliations and Expertise, Massachusetts Institute of Technology, USAGoogle Scholar
  24. 24.
    Syahrul S, Dincer I, Hamdullahpur F (2003) Thermodynamic modeling of fluidized bed drying of moist particles. Int J Therm Sci 42:691–701CrossRefGoogle Scholar
  25. 25.
    Holman JP (1994) Perpindahan kalor. Erlangga, CiracasGoogle Scholar
  26. 26.
    Husain S, Horibe A, Haruki N (2007) Heat and mass transfer analysis of fluidized. Memoirs of the Faculty of Engineering, Okayama University 41:52–62Google Scholar
  27. 27.
    Syahrul S (2016) The effect of the initial mass of shelled corn for fluidized bed drying system. International Journal on Smart Material and Mechatronics 3(2):1–3CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Engineering FacultyMataram UniversityMataramIndonesia
  2. 2.Agricultural Engineering DepartmentMataram UniversityMataramIndonesia

Personalised recommendations