Advertisement

Non-intrusive measurement of thermal contact conductance at polymer-metal two dimensional annular interface

  • Samarjeet Chanda
  • C. Balaji
  • S. P. Venkateshan
Original
  • 54 Downloads

Abstract

This work reports the development of a measurement technique for the estimation of thermal contact conductance at a polymer (Nylon)-metal(Copper) two dimensional interface having an annular contact under low external loading. The experimental setup consists of a vacuum chamber capable of achieving a pressure of 10−6 mbar. The chamber is fitted with electrical, thermocouple and fluid feed-throughs. Two dimensional temperature measurements are performed on the top surface of the polymer sample away from the boundary interface and are used to estimate the thermal contact conductance at the interface. The estimation process is accomplished by solving an inverse heat conduction problem using artificial neural networks coupled with Genetic algorithm. The actual pressure distribution at the annular Nylon-Copper interface is measured using a pressure sensitive film and the variation and the distribution of contact area between the mating surfaces is shown. The estimated values of thermal contact conductance obtained using the developed non-intrusive technique are found to be in good agreement with those reported in literature.

Nomenclature

English Symbols

hc

mean thermal contact conductance over the annular interface, W/m2K

k

thermal conductivity of sample, W/m K

m

number of samples used for testing the network

l

length of the nylon sample and copper frame (along x), mm

n

number of temperature measurement points

t

thickness of the nylon sample (along z), mm

T

computed temperature, C or K

w

width of the nylon sample and copper frame (along y), mm

x,y,z

Cartesian coordinates

Greek Symbols

𝜖

emissivity

σ

uncertainty in measurement

Subscripts

a

actual value obtained from numerical solution of direct problem

b

physical dimension of heater (mm)

Cu

value at the copper frame surface

e

experimental value

max

maximum value

min

minimum value

p

predicted value obtained from the trained artificial neural network

s

simulated value

Abbreviations

ANN

artificial neural network

GA

genetic algorithm

MSE

mean squared error

MRE

mean relative error

MAE

mean absolute error

PDF

probability density function

SS 304

stainless steel of grade 304 designated by American Iron and Steel Institute

Notes

Acknowledgements

The authors thank IITM-ISRO Space Technology Cell for funding this research work.

References

  1. 1.
    Mantelli M, Yovanovich M (2002) Thermal contact resistance. Spacecraft Thermal Control Handbook, 1Google Scholar
  2. 2.
    Cooper M, Mikic B, Yovanovich M (1969) Thermal contact conductance. Int J Heat Mass Transf 12 (3):279CrossRefGoogle Scholar
  3. 3.
    Thomas T, Probert S (1970) Thermal contact resistance: the directional effect and other problems. Int J Heat Mass Transf 13(5):789CrossRefGoogle Scholar
  4. 4.
    Das A, Sadhal S (1999) Thermal constriction resistance between two solids for random distribution of contacts. Heat Mass Transf 35(2):101CrossRefGoogle Scholar
  5. 5.
    Rostami A, Hassan A, Lim P (2001) Parametric study of thermal constriction resistance. Heat Mass Transf 37(1):5CrossRefGoogle Scholar
  6. 6.
    Madhusudana C (1975) The effect of interface fluid on thermal contact conductance. Int J Heat Mass Transf 18(7):989CrossRefGoogle Scholar
  7. 7.
    Madhusudana C, Fletcher LS (1981) Thermal contact conductance: a review of recent literature. (Department of Mechanical Engineering, College of Engineering Texas A & M University)Google Scholar
  8. 8.
    Madhusudana C, Fletcher L (1986) Contact heat transfer-the last decade. AIAA J 24(3):510MathSciNetCrossRefGoogle Scholar
  9. 9.
    Madhusudana C (1993) Thermal contact conductance and rectification at low joint pressures. Int Commun Heat Mass Transfer 20(1):123CrossRefGoogle Scholar
  10. 10.
    Madhusudana C (2000) Accuracy in thermal contact conductance experiments-the effect of heat losses to the surroundings. Int Commun Heat Mass Transfer 27(6):877CrossRefGoogle Scholar
  11. 11.
    Madhusudana CV (1996) Thermal contact conductance. Springer, New YorkCrossRefGoogle Scholar
  12. 12.
    Lambert M, Fletcher L (1997) Review of models for thermal contact conductance of metals. J Thermophys Heat Transfer 11(2):129CrossRefGoogle Scholar
  13. 13.
    Maddren J, Marschall E (1995) Predicting thermal contact resistance at cryogenic temperatures for spacecraft applications. J Spacecr Rocket 32(3):469CrossRefGoogle Scholar
  14. 14.
    Salerno L, Kittel P, Spivak A (1984) Thermal conductance of pressed copper contacts at liquid helium temperatures. AIAA J 22(12):1810CrossRefGoogle Scholar
  15. 15.
    Xu R, Xu L (2005) An experimental investigation of thermal contact conductance of stainless steel at low temperatures. Cryogenics 45(10):694CrossRefGoogle Scholar
  16. 16.
    Shi L, Wu G, Wang Hl, Yu Xm (2012) Interfacial thermal contact resistance between aluminum nitride and copper at cryogenic temperature. Heat Mass Transf 48(6):999CrossRefGoogle Scholar
  17. 17.
    Nishino K, Yamashita S, Torii K (1995) Thermal contact conductance under low applied load in a vacuum environment. Exp Thermal Fluid Sci 10(2):258CrossRefGoogle Scholar
  18. 18.
    Milanez FH, Yovanovich MM, Mantelli MB (2004) Thermal contact conductance at low contact pressures. J Thermophys Heat Transfer 18(1):37CrossRefGoogle Scholar
  19. 19.
    Marotta E, Fletcher L (1996) Thermal contact conductance of selected polymeric materials. J Thermophys Heat Transfer 10(2):334CrossRefGoogle Scholar
  20. 20.
    Fuller J, Marotta E (2000) Thermal contact conductance of metal/polymer joints. J Thermophys Heat Transfer 14(2):283CrossRefGoogle Scholar
  21. 21.
    Mirmira S, Fletcher L (1999) Comparison of effective thermal conductivity and contact conductance of fibrous composites. J Thermophys Heat Transfer 13(2):272CrossRefGoogle Scholar
  22. 22.
    Mirmira S, Jackson M, Fletcher L (2001) Effective thermal conductivity and thermal contact conductance of graphite fiber composites. J Thermophys Heat Transfer 15(1):18CrossRefGoogle Scholar
  23. 23.
    Ding C, Wang R (2015) Experimental investigation of thermal contact conductance across gfrp–gfrp joint. Heat Mass Transf 51(3):433CrossRefGoogle Scholar
  24. 24.
    Huang C, Ozisik M, Sawaf B (1992) Conjugate gradient method for determining unknown contact conductance during metal casting. Int J Heat Mass Transf 35(7):1779CrossRefGoogle Scholar
  25. 25.
    Orlande H, Ozisik M (1993) Inverse problem of estimating interface conductance between periodically contacting surfaces. J Thermophys Heat Transfer 7(2):319CrossRefGoogle Scholar
  26. 26.
    Chen TC, Tuan PC (2002) Inverse problem of estimating interface conductance between periodically contacting surfaces using the weighting input estimation method. Numer Heat Transfer: Part B: Fund 41(5):477CrossRefGoogle Scholar
  27. 27.
    Chanda S, Balaji C, Venkateshan S, Yenni GR (2017) Estimation of principal thermal conductivities of layered honeycomb composites using ann–ga based inverse technique. Int J Therm Sci 111:423CrossRefGoogle Scholar
  28. 28.
    Mirmira S, Marotta E, Fletcher L (1997) Thermal contact conductance of adhesives for microelectronic systems. J Thermophys Heat Transfer 11(2):141CrossRefGoogle Scholar
  29. 29.
    Marquardt E, Le J, Radebaugh R (2002) Cryogenic material properties database. Cryocoolers 11:681–687Google Scholar
  30. 30.
    dos Santos WN, De Sousa J, Gregorio R Jr (2013) Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test 32(5):987CrossRefGoogle Scholar
  31. 31.
    Moré JJ (1978) In: Numerical analysis. Springer, pp 105–116Google Scholar
  32. 32.
    Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Inc., New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations