Heat and Mass Transfer

, Volume 54, Issue 9, pp 2815–2826 | Cite as

Uncertainty in temperature-based determination of time of death

  • Martin Weiser
  • Bodo Erdmann
  • Sebastian Schenkl
  • Holger Muggenthaler
  • Michael Hubig
  • Gita Mall
  • Stefan Zachow


Temperature-based estimation of time of death (ToD) can be performed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer models. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We investigate the impact of parameter variations and geometry representation on the estimated ToD. For this, numerical simulation of analytic heat transport models is performed on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed tomography (CT) data set, differentiating various organs and tissue types. From that and prior information available on thermal parameters and their variability, we identify the most crucial parameters to measure or estimate, and obtain an a priori uncertainty quantification for the ToD.



We thank our colleague Marian Moldenhauer for careful reading of the article and for helpful comments. Funding by the University of Jena is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Foundation for Research on Information Technologies in Society (IT’IS). ZurichGoogle Scholar
  2. 2.
    Allen P, Branscheid W, Dobrowolski A, Horn P (2004) Schlachtkörperwertbestimmung beim Schwein - Röntgen-Computertomographie als mögliche Referenzmethode. Fleischwirtschaft 3:109–112Google Scholar
  3. 3.
    Borouchaki H, Hecht F, Frey PJ (1998) Mesh gradation control. Int J Numer Meth Eng 43(6):1143–1165MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cengel YA, Ghajar AJ (2015) Heat and Mass Transfer, Fundamentals & Applications. MacGraw-Hill, NYGoogle Scholar
  5. 5.
    Clarys JP, Provyn S, Marfell-Jones MJ (2005) Cadaver studies and their impact on the understanding of human adiposity. Ergonomics 48:1445–1461CrossRefGoogle Scholar
  6. 6.
    Deuflhard P, Schiela A, Weiser M (2012) Mathematical cancer therapy planning in deep regional hyperthermia. Acta Numer 2:307–378MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Deuflhard P, Weiser M (2012) Adaptive numerical solution of PDEs. de Gruyter, BerlinCrossRefzbMATHGoogle Scholar
  8. 8.
    Deuflhard P, Weiser M, Seebaß M (2000) A new nonlinear elliptic multilevel FEM applied to regional hyperthermia. Comput Vis Sci 3(3):115–120CrossRefzbMATHGoogle Scholar
  9. 9.
    Frankenfield DC, Smith Jr JS, Conney RN, Blosser SA, Sarson GY (1997) Relative association of fever and injury with hypermetabolism in critically ill patients. Injury 28(9–10):617–621CrossRefGoogle Scholar
  10. 10.
    Garland M, Heckbert PM (1997) Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’97, pp 209?-216Google Scholar
  11. 11.
    Hutchins GM (1985) Body temperature is elevated in the early postmortem period. Human Pathol 16 (6):560–561CrossRefGoogle Scholar
  12. 12.
    Götschel S, Weiser M, Schiela A (2012) Solving optimal control problems with the Kaskade 7 finite element toolbox. In: Dedner A, Flemisch B, Klöfkorn R (eds) Advances in DUNE. Springer, pp 101–112Google Scholar
  13. 13.
    Guyton AC, Hall JE (2000) Textbook of Medical Physiology. Saunders, UKGoogle Scholar
  14. 14.
    Henßge C (1988) Death time estimation in case work. I: The rectal temperature time of death nomogram. Forensic Sci Int 38:209–236CrossRefGoogle Scholar
  15. 15.
    Henßge C, Madea B (2004) Estimation of the time since death in the early post-mortem period. Forensic Sci Int 144:167–175CrossRefGoogle Scholar
  16. 16.
    Hooft P, van de Voorde H (1989) The role of intestinal bacterial heat production in confounding postmortem temperature measurements. Rechtsmedizin 102:331–336Google Scholar
  17. 17.
    Janssens V, Thys P, Clarys JP, Kvis H, Chowdhury B, Zinzen E, Cabri J (1994) Post-mortem limitations of body composition analysis by computed tomography. Ergonomics 37:207–216CrossRefGoogle Scholar
  18. 18.
    Klinke R, Silbernagl SA (eds) (1994) Lehrbuch der Physiologie. Thieme, StuttgartGoogle Scholar
  19. 19.
    Lang J, Erdmann B, Seebaß M (1999) Impact of Nonlinear Heat Transfer on Temperature Control in Regional Hyperthermia. IEEE Trans Biomed Eng 46(9):1129–1138CrossRefGoogle Scholar
  20. 20.
    Lo SH (1995) Automatic mesh generation over intersecting surfaces. Int J Num Meth Eng 38:943–954CrossRefzbMATHGoogle Scholar
  21. 21.
    Madea B (1994) Importance of supravitality in forensic medicine. Forensic Sci Int 69:221–241CrossRefGoogle Scholar
  22. 22.
    Mall G, Eisenmenger W (2005) Estimation of time since death by heat-flow finite-element model. Part I: Method, model, calibration and validation. Leg Med 7:1–14CrossRefGoogle Scholar
  23. 23.
    Mall G, Eisenmenger W (2005) Estimation of time since death by heat-flow finite-element model. Part II: Application to non-standard cooling conditions and preliminary results in practical casework. Leg Med 7:69–80CrossRefGoogle Scholar
  24. 24.
    Mall G, Hubig M, Beier G, Büttner A, Eisenmenger W (2002) Supravital energy production in early post-mortem phase – Estimate based on heat loss due to radiation and natural convection. Leg Med 4:71–78CrossRefGoogle Scholar
  25. 25.
    Marshall T, Hoare F (1962) Estimating the time of death: The rectal cooling after death and its mathematical expression. J Forensic Sci 7:56–81Google Scholar
  26. 26.
    Muggenthaler H, Sinicina I, Hubig M, Mall G (2012) Database of post-mortem rectal cooling cases under strictly controlled conditions: A useful tool in death time estimation. Leg Med 126:79–87Google Scholar
  27. 27.
    Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Phys 1:93–122Google Scholar
  28. 28.
    Rassineux A (1998) Generation and optimization of tetrahedral meshes by advancing front technique. Numer Meth Eng 41:651–674CrossRefzbMATHGoogle Scholar
  29. 29.
    Rodrigo MR (2014) Time of death estimation from temperature readings only: A Laplace transform approach. Appl Math Lett 39:47–52MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rodrigo MR (2016) A nonlinear least squares approach to time of death estimation via body cooling. Forensic Sci 61(1):230–233CrossRefGoogle Scholar
  31. 31.
    Romvari R, Dobrowolski A, Repa I (2006) Development of a computed tomographic calibration method for the determination of lean meat content in pig carcasses. Acta Vet Hung 54(1):1–10CrossRefGoogle Scholar
  32. 32.
    Schmidt RF, Thews G, Lang F (eds) (1997) Physiologie des Menschen. Springer, BerlinGoogle Scholar
  33. 33.
    Smart J (2010) Estimation of time of death with a Fourier series unsteady-state heat transfer model. J Forensic Sci 55(6):1481–1487CrossRefGoogle Scholar
  34. 34.
    Smart J, Kaliszan M (2012) The post-mortem temperature plateau and its role in the estimation of time of death. A review. Leg Med 14:55–62CrossRefGoogle Scholar
  35. 35.
    Werner J (1984) Regelung der menschlichen Körpertemperatur. de Gruyter, BerlinGoogle Scholar
  36. 36.
    Zachow S, Zilske M, Hege H-C (2007) 3d reconstruction of individual anatomy from medical image data: Segmentation and geometry processing. In: 25. ANSYS Conference & CADFEM Users’ MeetingGoogle Scholar
  37. 37.
    Zienkiewicz O, Taylor RL, Zhu JZ, Nithiarasu P (2005) The finite element method. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  38. 38.
    Zilske M, Lamecker H, Zachow S (2008) Adaptive remeshing of non-manifold surfaces. In: Eurographics 2008 Annex to the Conference Proceedings, pp 207–211Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.Institute of Forensic MedicineJena University Hospital – Friedrich Schiller UniversityJenaGermany

Personalised recommendations