Advertisement

Diffusion of methane in high-silica CHA zeolite

  • Hafez MaghsoudiEmail author
  • Vahid Nozari
  • S. Reza Zamzami
Original
  • 36 Downloads

Abstract

Diffusivity of methane in CHA-type zeolite (Si/Al = 160) was investigated by uptake rate method using a volumetric adsorption setup. The methane diffusivities were measured over a range of temperature (298-393 K) and pressure (0-0.9 bar) to study the effect of temperature and pressure on the diffusion coefficients. The results showed that the diffusivities decrease with pressure while they increase with increase in temperature. Furthermore, activation energy of diffusion decreases with pressure. The limiting values of activation energy and diffusivity of methane (at 298 K) at p = 0 (zero loading) were estimated to be 18.0 kJ/mol and ~3.2 × 10−13 m2/s, respectively. The results were compared with the diffusivities of CH4 in 12-, 10- and 8-MR zeolites.

Nomenclature

C0

initial loading of the zeolite particles, (mol/kg)

D

diffusivity, (m2/s)

D

diffusivity at infinite temperature, (m2/s)

E

activation energy of diffusion, (kJ mol-1)

m*

mass of adsorptive in storage vessel prior to adsorption, (mol)

mf

mass of adsorptive in gas phase, (mol)

mt

mass adsorbed on the adsorbent at time t, (mol/kg)

m

mass adsorbed at the equilibrium (t→∞), (mol/kg)

M

molar mass of adsorptive gas, (kg/kmol)

p

pressure of adsorptive gas, (bar)

ri

radius of adsorbents particle, (m)

R

universal gas constant, (83.14 cm3 bar mol-1 K-1)

t

time, (s)

T

absolute temperature, (K)

VAC

volume of adsorption chamber, (cm3)

VSV

volume of storage vessel, (cm3)

VsHe

volume of a (porous) sorbent measured by helium expansion experiments, (cm3)

wi

weight fraction of the particles of radius ri, (-)

Z

gas compressibility factor, (-)

σ2

variance of a measurable quantity, (unit2)

Notes

References

  1. 1.
    Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM (2012) Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc 134(4):1970–1973CrossRefGoogle Scholar
  2. 2.
    Shang J, Li G, Singh R, Xiao P, Danaci D, Liu JZ, Webley PA (2014) Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: a combination of van der Waals density functional theory calculations and experiment study. J Chem Phys 140(8):084705CrossRefGoogle Scholar
  3. 3.
    Maghsoudi H, Soltanieh M, Bozorgzadeh H, Mohamadalizadeh A (2013) Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption 19(5):1045–1053CrossRefGoogle Scholar
  4. 4.
    Li S, Martinek JG, Falconer JL, Noble RD, Gardner TQ (2005) High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind Eng Chem Res 44(9):3220–3228CrossRefGoogle Scholar
  5. 5.
    Venna SR, Carreon MA (2011) Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir 27(6):2888–2894CrossRefGoogle Scholar
  6. 6.
    Kosinov N, Auffret C, Gücüyener C, Szyja BM, Gascon J, Kapteijn F, Hensen EJ (2014) High flux high-silica SSZ-13 membrane for CO2 separation. J Mater Chem A 2(32):13083–13092CrossRefGoogle Scholar
  7. 7.
    Maghsoudi H, Soltanieh M (2014) Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. J Membr Sci 470:159–165CrossRefGoogle Scholar
  8. 8.
    Wu T, Diaz MC, Zheng Y, Zhou R, Funke HH, Falconer JL, Noble RD (2015) Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes. J Membr Sci 473:201–209CrossRefGoogle Scholar
  9. 9.
    Krishna R, Van Baten J, Garcia-Perez E, Calero S (2006) Diffusion of CH4 and CO2 in MFI, CHA and DDR zeolites. Chem Phys Lett 429(1-3):219–224CrossRefGoogle Scholar
  10. 10.
    Beerdsen E, Dubbeldam D, Smit B (2006) Loading dependence of the diffusion coefficient of methane in nanoporous materials. J Phys Chem B 110(45):22754–22772CrossRefGoogle Scholar
  11. 11.
    Jee SE, Sholl DS (2009) Carbon dioxide and methane transport in DDR zeolite: insights from molecular simulations into carbon dioxide separations in small pore zeolites. J Am Chem Soc 131(22):7896–7904CrossRefGoogle Scholar
  12. 12.
    Demontis P, Fois ES, Suffritti GB, Quartieri S (1990) Molecular dynamics studies on zeolites. 4. Diffusion of methane in silicalite. J Phys Chem 94(10):4329–4334CrossRefGoogle Scholar
  13. 13.
    Garcia-Sanchez A, Dubbeldam D, Calero S (2010) Modeling adsorption and self-diffusion of methane in LTA zeolites: the influence of framework flexibility. J Phys Chem C 114(35):15068–15074CrossRefGoogle Scholar
  14. 14.
    Zimmermann NE, Jakobtorweihen S, Beerdsen E, Smit B, Keil FJ (2007) In-depth study of the influence of host− framework flexibility on the diffusion of small gas molecules in one-dimensional zeolitic pore systems. J Phys Chem C 111(46):17370–17381CrossRefGoogle Scholar
  15. 15.
    Vidoni A, Ruthven D (2012) Diffusion of methane in DD3R zeolite. Microporous Mesoporous Mater 159:57–65CrossRefGoogle Scholar
  16. 16.
    Yucel H, Ruthven DM (1980) Diffusion in 4A zeolite. Study of the effect of crystal size. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 76:60–70Google Scholar
  17. 17.
    Mohr R, Vorkapic D, Rao M, Sircar S (1999) Pure and binary gas adsorption equilibria and kinetics of methane and nitrogen on 4A zeolite by isotope exchange technique. Adsorption 5(2):145–158CrossRefGoogle Scholar
  18. 18.
    Yucel H, Ruthven DM (1980) Diffusion in 5A zeolite. Study of the effect of crystal size. J Chem Soc Faraday Trans 1 Phys Chemi Condens Phases 76:71–83Google Scholar
  19. 19.
    Caro J, Hǒcevar S, Kärger J, Riekert L (1986) Intracrystalline self-diffusion of H2O and CH4 in ZSM-5 zeolites. Zeolites 6(3):213–216CrossRefGoogle Scholar
  20. 20.
    Silva JA, Schumann K, Rodrigues AE (2012) Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater 158:219–228CrossRefGoogle Scholar
  21. 21.
    Lauerer A, Binder T, Haase J, Kärger J, Ruthven D (2015) Diffusion of propene in DDR crystals studied by interference microscopy. Chem Eng Sci 138:110–117CrossRefGoogle Scholar
  22. 22.
    Pourmahdi Z, Maghsoudi H (2017) Adsorption isotherms of carbon dioxide and methane on CHA-type zeolite synthesized in fluoride medium. Adsorption 23(6):799–807CrossRefGoogle Scholar
  23. 23.
    Keller JU, Staudt R (2005) Gas adsorption equilibria: experimental methods and adsorptive isotherms. Springer Science & Business MediaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hafez Maghsoudi
    • 1
    Email author
  • Vahid Nozari
    • 1
  • S. Reza Zamzami
    • 1
  1. 1.Chemical Engineering Faculty and Nanostructure Materials Research Center (NMRC)Sahand University of TechnologyTabrizIran

Personalised recommendations