Advertisement

Heat and Mass Transfer

, Volume 54, Issue 4, pp 1189–1197 | Cite as

Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution

  • F. Bennai
  • N. Issaadi
  • K. Abahri
  • R. BelarbiEmail author
  • A. Tahakourt
Original

Abstract

The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.

Notes

Acknowledgements

This work was supported by the French National Research Agency (ANR) through the Program Solar Buildings (project HYGROBAT N°ANR-10-HABISOL-005).

References

  1. 1.
    Amziane S, Arnaud L (2013) Bio-aggregate-based building materials: applications to hemp concretes. ISTE, LondonCrossRefGoogle Scholar
  2. 2.
    Nozahic V, Amziane S, Torrent G et al (2012) Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cem Concr Compos 34:231–241.  https://doi.org/10.1016/j.cemconcomp.2011.09.002 CrossRefGoogle Scholar
  3. 3.
    Li Z, Wang X, Wang L (2006) Properties of hemp fibre reinforced concrete composites. Compos A: Appl Sci Manuf 37:497–505.  https://doi.org/10.1016/j.compositesa.2005.01.032 CrossRefGoogle Scholar
  4. 4.
    Pretot S, Collet F, Garnier C (2014) Life cycle assessment of a hemp concrete wall: impact of thickness and coating. Build Environ 72:223–231.  https://doi.org/10.1016/j.buildenv.2013.11.010 CrossRefGoogle Scholar
  5. 5.
    Bouloc P (2013) Hemp: industrial production and uses. CABI, WallingfordCrossRefGoogle Scholar
  6. 6.
    Othmen I (2015) Étude des matériaux d’isolation compatibles avec la pierre de tuffeau : application à la réhabilitation du bâti ancien et/ou historique. Université de Nante, Thèse de doctoratGoogle Scholar
  7. 7.
    Colinart T, Glouannec P, Chauvelon P (2012) Influence of the setting process and the formulation on the drying of hemp concrete. Constr Build Mater 30:372–380.  https://doi.org/10.1016/j.conbuildmat.2011.12.030 CrossRefGoogle Scholar
  8. 8.
    Boutin M-P, Flamin C, Quinton S, Gosse G (2005) Analyse du cycle de vie de : Compounds thermoplastiques chargés fibres de chanvre et Mur en béton de chanvre banché sur ossature en bois. Villeneuve-d'Ascq, INRA LilleGoogle Scholar
  9. 9.
    Arnaud L, Gourlay E (2012) Experimental study of parameters influencing mechanical properties of hemp concretes. Constr Build Mater 28:50–56.  https://doi.org/10.1016/j.conbuildmat.2011.07.052 CrossRefGoogle Scholar
  10. 10.
    Tronet P, Lecompte T, Picandet V, Baley C (2016) Study of lime hemp concrete (LHC) – mix design, casting process and mechanical behaviour. Cem Concr Compos 67:60–72.  https://doi.org/10.1016/j.cemconcomp.2015.12.004 CrossRefGoogle Scholar
  11. 11.
    Glé P, Gourdon E, Arnaud L (2012) Modelling of the acoustical properties of hemp particles. Constr Build Mater 37:801–811.  https://doi.org/10.1016/j.conbuildmat.2012.06.008 CrossRefGoogle Scholar
  12. 12.
    Glé P, Gourdon E, Arnaud L (2011) Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl Acoust 72:249–259.  https://doi.org/10.1016/j.apacoust.2010.11.003 CrossRefGoogle Scholar
  13. 13.
    Benfratello S, Capitano C, Peri G et al (2013) Thermal and structural properties of a hemp–lime biocomposite. Constr Build Mater 48:745–754.  https://doi.org/10.1016/j.conbuildmat.2013.07.096 CrossRefGoogle Scholar
  14. 14.
    Elfordy S, Lucas F, Tancret F et al (2008) Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr Build Mater 22:2116–2123.  https://doi.org/10.1016/j.conbuildmat.2007.07.016 CrossRefGoogle Scholar
  15. 15.
    Mazhoud B, Collet F, Pretot S, Chamoin J (2016) Hygric and thermal properties of hemp-lime plasters. Build Environ 96:206–216.  https://doi.org/10.1016/j.buildenv.2015.11.013 CrossRefGoogle Scholar
  16. 16.
    Shea A, Lawrence M, Walker P (2012) Hygrothermal performance of an experimental hemp–lime building. Constr Build Mater 36:270–275.  https://doi.org/10.1016/j.conbuildmat.2012.04.123 CrossRefGoogle Scholar
  17. 17.
    Walker R, Pavía S (2014) Moisture transfer and thermal properties of hemp–lime concretes. Constr Build Mater 64:270–276.  https://doi.org/10.1016/j.conbuildmat.2014.04.081 CrossRefGoogle Scholar
  18. 18.
    Collet F, Pretot S (2014) Thermal conductivity of hemp concretes: variation with formulation, density and water content. Constr Build Mater 65:612–619.  https://doi.org/10.1016/j.conbuildmat.2014.05.039 CrossRefGoogle Scholar
  19. 19.
    Collet F, Pretot S (2012) Experimental investigation of moisture buffering capacity of sprayed hemp concrete. Constr Build Mater 36:58–65.  https://doi.org/10.1016/j.conbuildmat.2012.04.139 CrossRefGoogle Scholar
  20. 20.
    Walker R, Pavia S, Mitchell R (2014) Mechanical properties and durability of hemp-lime concretes. Constr Build Mater 61:340–348.  https://doi.org/10.1016/j.conbuildmat.2014.02.065 CrossRefGoogle Scholar
  21. 21.
    de Bruijn P, Johansson P (2013) Moisture fixation and thermal properties of lime–hemp concrete. Constr Build Mater 47:1235–1242.  https://doi.org/10.1016/j.conbuildmat.2013.06.006 CrossRefGoogle Scholar
  22. 22.
    Rahim M, Douzane O, Tran Le AD et al (2015) Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy and Buildings 88:91–99.  https://doi.org/10.1016/j.enbuild.2014.11.043 CrossRefGoogle Scholar
  23. 23.
    Tran Le AD, Maalouf C, Mai TH et al (2010) Transient hygrothermal behaviour of a hemp concrete building envelope. Energy and Buildings 42:1797–1806.  https://doi.org/10.1016/j.enbuild.2010.05.016 CrossRefGoogle Scholar
  24. 24.
    Belarbi R, Qin M, Aït-Mokhtar A, Nilsson L-O (2008) Experimental and theoretical investigation of non-isothermal transfer in hygroscopic building materials. Build Environ 43:2154–2162.  https://doi.org/10.1016/j.buildenv.2007.12.014 CrossRefGoogle Scholar
  25. 25.
    Qin M, Belarbi R, Aït-Mokhtar A, Nilsson L-O (2009) Coupled heat and moisture transfer in multi-layer building materials. Constr Build Mater 23:967–975.  https://doi.org/10.1016/j.conbuildmat.2008.05.015 CrossRefGoogle Scholar
  26. 26.
    Remki B, Abahri K, Tahlaiti M, Belarbi R (2012) Hygrothermal transfer in wood drying under the atmospheric pressure gradient. Int J Therm Sci 57:135–141.  https://doi.org/10.1016/j.ijthermalsci.2012.02.005 CrossRefGoogle Scholar
  27. 27.
    Ferroukhi MY, Abahri K, Belarbi R et al (2016) Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components. Heat Mass Transf 52:2257–2269.  https://doi.org/10.1007/s00231-015-1740-y CrossRefGoogle Scholar
  28. 28.
    Ferroukhi MY, Abahri K, Belarbi R, Limam K (2017) Integration of a hygrothermal transfer model for envelope in a building energy simulation model: experimental validation of a HAM–BES co-simulation approach. Heat Mass Transf 53:1851–1861.  https://doi.org/10.1007/s00231-016-1944-9 CrossRefGoogle Scholar
  29. 29.
    Issaadi N, Nouviaire A, Belarbi R, Aït-Mokhtar A (2015) Moisture characterization of cementitious material properties: assessment of water vapor sorption isotherm and permeability variation with ages. Constr Build Mater 83:237–247.  https://doi.org/10.1016/j.conbuildmat.2015.03.030 CrossRefGoogle Scholar
  30. 30.
    European Standard ISO 12572 Building materials (1997) Determination of water vapor transmission properties (ISO/DIS 12572:1997) PrEN ISO 12572Google Scholar
  31. 31.
    NFEN12664 (2001) Performance thermique des matériaux et produits pour le bâtiment - Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique – Produits secs et humides de moyenne et basse résistance thermiqueGoogle Scholar
  32. 32.
    NFEN12667 (2001) Performance thermique des matériaux et produits pour le bâtiment - Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique – Produits de haute et moyenne résistance thermiqueGoogle Scholar
  33. 33.
    Fagerlund G (1973) Determination of specific surface by the BET method. Mater Constr 6:239–245.  https://doi.org/10.1007/BF02479039 CrossRefGoogle Scholar
  34. 34.
    Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem.  https://doi.org/10.1351/pac198557040603
  35. 35.
    Lawrence M, Jiang Y (2017) Porosity, pore size distribution, micro-structure. In: Amziane S, Collet F (eds) Bio-aggregates based building materials. Springer Netherlands, Dordrecht, pp 39–71CrossRefGoogle Scholar
  36. 36.
    Lawrence RM, Mays TJ, Rigby SP et al (2007) Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cem Concr Res 37:1059–1069.  https://doi.org/10.1016/j.cemconres.2007.04.011 CrossRefGoogle Scholar
  37. 37.
    Peuhkuri R (2003) Moisture dynamics in building envelopes. Ph. D. thesis, Technical University of DenmarkGoogle Scholar
  38. 38.
    Furmaniak S, Terzyk AP, Gauden PA (2007) The general mechanism of water sorption on foodstuffs – importance of the multitemperature fitting of data and the hierarchy of models. J Food Eng 82:528–535.  https://doi.org/10.1016/j.jfoodeng.2007.03.012 CrossRefGoogle Scholar
  39. 39.
    Talukdar P, Olutmayin SO, Osanyintola OF, Simonson CJ (2007) An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part I: experimental facility and material property data. Int J Heat Mass Transf 50:4527–4539.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.026 CrossRefGoogle Scholar
  40. 40.
    Kumaran MK (2006) A Thermal and moisture property database for common building and insulation materials. ASHRAE Trans 112:1–13Google Scholar
  41. 41.
    Troppová E, Švehlík M, Tippner J, Wimmer R (2015) Influence of temperature and moisture content on the thermal conductivity of wood-based fibreboards. Mater Struct 48:4077–4083.  https://doi.org/10.1617/s11527-014-0467-4 CrossRefGoogle Scholar
  42. 42.
    Kari B, Perrin B, Foures JC (1992) Modélisation macroscopique des transferts de chaleur et d’humidité dans des matériaux du bâtiment. Les données nécessaires. Mater Struct 25:482–489.  https://doi.org/10.1007/BF02472638 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • F. Bennai
    • 1
    • 2
  • N. Issaadi
    • 2
  • K. Abahri
    • 3
  • R. Belarbi
    • 2
    Email author
  • A. Tahakourt
    • 1
  1. 1.Laboratoire de Génie de la Construction et Architecture (LGCA), Faculté de TechnologieUniversité de BejaiaBejaiaAlgeria
  2. 2.University of La Rochelle – CNRS, LaSIE UMR 7356La Rochelle Cedex 1France
  3. 3.LMT-Cachan/ENS Cachan/CNRS/Université Paris SaclayCachanFrance

Personalised recommendations