Advertisement

Heat and Mass Transfer

, Volume 55, Issue 1, pp 3–16 | Cite as

Outer heat transfer coefficient for condensation of pure components on single horizontal low-finned tubes

  • Anna ReifEmail author
  • Alexander Büchner
  • Sebastian Rehfeldt
  • Harald Klein
Original

Abstract

The outer heat transfer coefficient is determined for the condensation of pure components (iso-propanol, n-pentane, n-heptane, iso-octane and water) on low-finned carbon steel, stainless steel and titanium tubes. The outer heat transfer coefficient on these tubes is 3 to 8 times higher than on a smooth tube with the same reference surface area. The experimental data are compared with theoretical models from literature for the condensation of refrigerants and water. These models do not predict all experimental data for the condensation of iso-propanol and hydrocarbons on low-finned tubes with the accuracy given in the respective papers. Therefore, a new approach for calculation of the outer heat transfer coefficient based on dimensionless numbers is developed. With this new equation, it can be predicted with a maximum deviation of ±20%.

Keywords

Outer heat transfer coefficient Condensation Low-finned tube 

Notes

Acknowledgments

The authors thank the German Bundesministerium für Bildung und Forschung (BMBF) for the funding of the joint research project !nnovA2 (www.innova2.de, FKZ 033RC1013D) and the Wieland Werke AG for the supply of the tubes. Further thanks to the TUM Graduate School for supporting the authors during their doctorate.

Compliance with Ethical Standards

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Nußelt W (1916) Die Oberflächenkondensation des Wasserdampfes. Z Ver Dtsch Ing 60(27):541–546, 569–575Google Scholar
  2. 2.
    Wanniarachchi AS, Marto PJ, Rose JW (1986) Film condensation of steam on horizontal finned tubes: effect of fin spacing. J Heat Tran 108(4):960–966CrossRefGoogle Scholar
  3. 3.
    Marto PJ, Zebrowski D, Wanniarachchi AS, Rose JW (1990) An experimental study of R-113 film condensation on horizontal finned tubes. J Heat Tran 112(3):758–767CrossRefGoogle Scholar
  4. 4.
    Briggs A, Wen X-L, Rose JW (1992) Accurate heat transfer measurements for condensation on horizontal, integral-fin tubes. J Heat Tran 114(3):719–726CrossRefGoogle Scholar
  5. 5.
    Jaber MH, Webb RL (1993) Enhanced tubes for steam condensers. Exper Heat Tran 6:35–54CrossRefGoogle Scholar
  6. 6.
    Briggs A, Rose JW (1995) Condensation performance of some commercial integral fin tubes with steam and CFC113. Exper Heat Tran 8:131–143CrossRefGoogle Scholar
  7. 7.
    Kumar R, Varma HK, Mohanty B, Agrawal KN (1998) Augmentation of outside tube heat transfer coefficient during condensation of steam over horizontal copper tubes. Int Commun Heat Mass 25:81–91CrossRefGoogle Scholar
  8. 8.
    Jung D, Kim C-B, Cho S, Song K (1999) Condensation heat transfer coefficients of enhanced tubes with alternative refrigerants for CFC11 and CFC12. Int J Refrig 22:548–557CrossRefGoogle Scholar
  9. 9.
    Belghazi M, Bontemps A, Marvillet C (2002) Condensation heat transfer on enhanced surface tubes, experimental results and predictive theory. J. Heat Tran 124(4):754–761CrossRefGoogle Scholar
  10. 10.
    Belghazi M, Bontemps A, Marvillet C (2002) Filmwise condensation of a pure fluid and a binary mixture in a bundle of enhanced surface tubes. Int J Therm Sci 41:631–638CrossRefGoogle Scholar
  11. 11.
    Kumar R, Varma HK, Mohanty B, Agrawal KN (2002) Augmentation of heat transfer during filmwise condensation of steam and R-134a over single horizontal finned tubes. Int J Heat Mass Tran 45:201–211CrossRefGoogle Scholar
  12. 12.
    Kumar R, Varma HK, Mohanty B, Agrawal KN (2002) Prediction of heat transfer coefficient during condensation of water and R-134a on single horizontal integral-fin tubes. Int J Refrig 25:111–126CrossRefGoogle Scholar
  13. 13.
    Belghazi M, Bontemps A, Marvillet C (2003) Experimental study of modelling of heat transfer during condensation of pure fluid and binary mixture on a bundle of horizontal finned tubes. Int J Refrig 26:214–223CrossRefGoogle Scholar
  14. 14.
    Fernández-Seara J, Uhía FJ, Diz R, Dopazo A (2010) Condensation of R-134a on horizontal integral-fin titanium tubes. Appl Therm Eng 30:295–301CrossRefGoogle Scholar
  15. 15.
    Al-Badri AR, Gebauer T, Leipertz A, Fröba AP (2013) Element by element prediction model for condensation heat transfer on a horizontal integral finned tube. Int J Heat Mass Tran 62:463–472CrossRefGoogle Scholar
  16. 16.
    Honda H, Nozu S, Mitsumori K (1983) Augmentation of condensation on finned tubes by attaching a porous drainage plate. Proc ASME-JSME Therm Eng Jt Conf 3:289–295Google Scholar
  17. 17.
    Yau KK, Cooper JR, Rose JW (1985) Effect of fin spacing on the performance of horizontal integral-fin condenser tubes. J. Heat Tran 107(2):377–383CrossRefGoogle Scholar
  18. 18.
    Masuda H, Rose JW (1987) An experimental study of condensation of refrigerant 113 on low integral-fin tube. Heat Transfer and Science Technology, Washington, pp 480–487Google Scholar
  19. 19.
    Masuda H, Rose JW (1987) Static configuration of liquid film on horizontal tubes with low radial fins: implications for condensation heat transfer. Proc Royal Soc Lond A 410:125–139CrossRefGoogle Scholar
  20. 20.
    Briggs A, Huang XS, Rose JW (1995) An experimental investigation of condensation on integral-fin tubes, effect of fin thickness, height and thermal conductivity. In: Proceedings of the 30th 1995 national heat transfer conference. basic aspects of two phase flow and heat transfer, vol 308. ASME, von Dhir, pp 21–29Google Scholar
  21. 21.
    Rose JW (1994) An approximate equation for the vapour-side heat-transfer coefficient, for condensation on low-finned tubes. Int J Heat Mass Tran 37(5):865–875CrossRefzbMATHGoogle Scholar
  22. 22.
    Briggs A, Rose JW (1994) Effect of fin efficiency on a model for condensation heat transfer on a horizontal Integral-fin Tube. Int J Heat Mass Tran 37(1):457–463CrossRefGoogle Scholar
  23. 23.
    Sukhatme SP, Jagadish BS, Prabhakaran P (1990) Film condensation of R-11 vapor on single horizontal enhanced condenser tubes. J Heat Tran 112.1:229–234CrossRefGoogle Scholar
  24. 24.
    Rudy TM, Webb RL (1983) Theoretical model for condensation on horizontal integral-fin tubes, vol 79. Heat Transfer Conference AlChE Symposium Series, New York, pp 11–18Google Scholar
  25. 25.
    Webb RL, Murawski CG (1990) Row effect for R-11 condensation on enhanced tubes. J Heat Transfer 112.3:768–776CrossRefGoogle Scholar
  26. 26.
    Masuda H, Rose JW (1987) An experimental study of condensation of refrigerant 113 on low integral-fin tube. Heat Transfer and Science Technology, Washington, pp 480–487Google Scholar
  27. 27.
    Marto PJ, Zebrowski D, Wanniarachchi AS, Rose JW (1988) Film condensation of R-113 on horizontal finned tubes, ASME symposium, HTD-96. Proc 1988 Nat Heat Tran Conf 2:583–592Google Scholar
  28. 28.
    Gogonin II, Dorokhov AR (1981) Enhancement of heat transfer in horizontal shell-and-tube condensers. Heat Tran-Sov Res 13.3:119–126Google Scholar
  29. 29.
    Katz DL, Hope RE, Datsko SC, Robinson DB (1947) Condensation of freon-12 with finned tubes. Refrigerating Eng 33:211–217Google Scholar
  30. 30.
    Pearson JF, Withers JG (1969) New finned tube configuration improves refrigerant condensing. ASHRAE J 11.6:77–82Google Scholar
  31. 31.
    Beatty KO, Katz DL (1948) Condensation of vapors on outside of finned tubes. Chem Eng Prog 44:55–70Google Scholar
  32. 32.
    Reif A, Büchner A, Rehfeldt S, Klein H (2015) Äußerer Wärmeübergangskoeffizient bei der Kondensation von Reinstoffen an einem horizontalen Rippenrohr. Chem Ing Tech 87:260–269CrossRefGoogle Scholar
  33. 33.
    Wieland (2015) Niedrigberippte Rohre GEWA-K und GEWA-KS, Produktkatalog Wieland-Werke AGGoogle Scholar
  34. 34.
    Ullrich C, Bodmer T (2013) D6.1: Metalle und metalllegierungen, VDI-Wärmeatlas. Springer-Verlag, BerlinGoogle Scholar
  35. 35.
    MatWeb (2015) Material Property Data, Available: http://www.matweb.com
  36. 36.
    Gnielinski V (2013) On heat transfer in tubes. Int J Heat Mass Tran 63:134–140CrossRefGoogle Scholar
  37. 37.
    Konakov PK (1946) Eine neue Formel für den Reibungskoeffizienten glatter Rohre (Orig. Russ). Ber Akad Wiss UdSSR L1.7:503–506Google Scholar
  38. 38.
    Büchner A, Reif A, Rehfeldt S, Klein H (2015) Problematik einheitlicher Betrachtungen des Wärmedurchgangs bei der Kondensation an strukturierten Rohren. Chem Ing Tech 87:1–6CrossRefGoogle Scholar
  39. 39.
    Ji W-T, Zhao C-Y, Zhang D-C, Li Z-Y, He Y-L, Tao W-Q (2014) Condensation of R134a outside horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes. Int J Heat Mass Tran 77:194–201CrossRefGoogle Scholar
  40. 40.
    Reif A (2016) Kondensation von Reinstoffen an horizontalen Rohren, Dissertation. Technische Universität München, MünchenGoogle Scholar
  41. 41.
    Adamek T (1981) Bestimmung der Kondensationsgrößen auf feingewellten Oberflächen zur Auslegung optimaler Wandprofile. Wärme-Stoffübertragung 15:255–270CrossRefGoogle Scholar
  42. 42.
    Gregorig R (1954) Hautkondensation an feingewellten Oberflächen bei Berücksichtigung der Oberflächenspannungen. Z Angew Math Phys 5:36–49CrossRefzbMATHGoogle Scholar
  43. 43.
    Laplace PS (1805) Traité de Mécanique Céleste, 4 De l’Imprimerie De CrapeletGoogle Scholar
  44. 44.
    Young T (1805) An Essay on the Cohesion of Fluids. S. 65-87. Philosophical Transactions of the Royal Society of London, London, p 95Google Scholar
  45. 45.
    Briggs A, Rose JW (1999) An evaluation of models for condensation heat transfer on low-finned tubes. Enhanc Heat Tran 6:51–60CrossRefGoogle Scholar
  46. 46.
    Rudy TM, Webb RL (1983) Theoretical model for condensation on horizontal integral-fin tubes, vol 79. Heat Transfer Conference AlChE Symposium Series, New York, pp 11–18Google Scholar
  47. 47.
    Mitrovic J (2005) Flow structures of a liquid film falling on horizontal tubes. Chem Eng Technol 28(6):684–694CrossRefGoogle Scholar
  48. 48.
    Honda H, Nozu C, Takeda Y (1987) Flow characteristics of condensate on a vertical column of horizontal low finned tubes. ASME-JSME Therm Eng Jt Conf 1:517–524Google Scholar
  49. 49.
    Boucher DF, Alves GE (1959) Dimensionless numbers. Chem Eng Prog 55(9):55–64Google Scholar
  50. 50.
    Webb RL (1988) Enhancement of film condensation. Int Commun Heat Mass 15:475–507CrossRefGoogle Scholar
  51. 51.
    Bejan A, Kraus AD (2003) Heat transfer handbook, vol 727. Wiley, New YorkGoogle Scholar
  52. 52.
    Holman JP (1989) Heat transfer, vol 497. McGraw Hill, New YorkGoogle Scholar
  53. 53.
    Stichlmair J (1990) Kennzahlen und Ähnlichkeitsgesetze im Ingenieurwesen. Altos-Verlag Doris Stichlmair, EssenGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Anna Reif
    • 1
    Email author
  • Alexander Büchner
    • 1
  • Sebastian Rehfeldt
    • 1
  • Harald Klein
    • 1
  1. 1.Department of Mechanical Engineering, Institute of Plant and Process TechnologyTechnical University of MunichGarchingGermany

Personalised recommendations