Advertisement

Heat and Mass Transfer

, Volume 51, Issue 8, pp 1167–1176 | Cite as

Experimental investigation of convective drying kinetics of kiwi under different conditions

  • Selçuk DarıcıEmail author
  • Soner Şen
Original

Abstract

The effects of air temperature, velocity and humidity on drying characteristics of kiwi are experimentally investigated for the temperatures in the range of 50–80 °C, of the velocities 0.5–2.0 m/s, of the relative humidity values of 5–20 % and for two slice thicknesses. It is observed that there is a very close agreement between the model of Midilli et al. (Dry Technol 20:1503–1513, 2002) and the present study with coefficients of correlation R2 of 0.9949–0.9996.

Keywords

Effective Diffusion Coefficient Moisture Diffusion Moisture Ratio Fall Rate Period Page Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

a, b, c

Constants of model equations

Deff

Effective diffusion coefficient (m2/s)

D0

Arrhenius factor (m2/s)

DR

Drying rate (g w /g db min)

Ea

Activation energy (kJ/mol)

k

Drying rate constant in model equations (1/min)

K

Slope

L

Half thickness of slice (m)

Md

Mass of dry matter (g)

Mo

Initial moisture content (g w /g dm )

Mt

Moisture content at time t (g w /g dm )

Mw

Mass of wet matter (g)

Mdb

Moisture content in dry base (g w /g dm )

Mwb

Moisture content in wet base (%)

Mt+∆t

Moisture content at time t + ∆t (g w /g dm )

MR

Moisture ratio

n

Exponents in model equations

R

Universal gas constant (kJ/mol K)

R2

Correlation coefficient

RMSE

Root mean square error

RH

Relative humidity (%)

t

Time (min)

T

Temperature (°C)

Tabs

Absolute temperature (K)

V

Air velocity (m/s)

Δt

Time difference (min)

Notes

Acknowledgement

The authors acknowledge the financial support provided by Scientific Research Projects Coordinatorship of Selçuk University Contract No: 09101056.

References

  1. 1.
    Midilli A, Kucuk H, Yapar Z (2002) A new model for single layer drying. Dry Technol 20:1503–1513CrossRefGoogle Scholar
  2. 2.
    Cassano A, Figoli A, Tagarelli A, Sindona G, Drioli E (2006) Integrated membrane process for the production of highly nutritional kiwifruit juice. Desalination 189:21–30CrossRefGoogle Scholar
  3. 3.
    Ayensu A (1997) Dehydration of food crops using a solar dryer with convective heat flow. Sol Energy 59:121–126CrossRefGoogle Scholar
  4. 4.
    Kassem AS (1998) Comparative studies on thin layer drying models for wheat. In: Proceedings of the 13th international congress on agricultural engineering MoroccoGoogle Scholar
  5. 5.
    Diamante LM, Munro PA (1993) Mathematical modeling of the thin layer solar drying of sweet potato slices. Sol Energy 51:271–276CrossRefGoogle Scholar
  6. 6.
    Pal US, Chakraverty A (1997) Thin layer convection drying of mushrooms. Energy Convers Manag 38:107–113CrossRefGoogle Scholar
  7. 7.
    Yaldiz O, Ertekin C (2001) Thin layer solar drying of some different vegetables. Dry Technol 19:583–596CrossRefGoogle Scholar
  8. 8.
    Wang CY, Singh RP (1978) A single layer drying equation for rough rice. Trans Am Soc Agric Eng 78:3001Google Scholar
  9. 9.
    Maskan M (2001) Kinetics of colour change of kiwi fruits during hot air and microwave drying. J Food Eng 48:169–175CrossRefGoogle Scholar
  10. 10.
    Ceylan I, Aktas M, Dogan H (2007) Mathematical modeling of drying characteristics of tropical fruits. Appl Therm Eng 27:1931–1936CrossRefGoogle Scholar
  11. 11.
    Kaya A, Aydin O, Dincer I (2008) Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch). J Food Eng 88:323–330CrossRefGoogle Scholar
  12. 12.
    Fathi M, Mohebbi M, Razavi SMA (2011) Effect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithm. Food Bioprocess Technol 4(8):1519–1526CrossRefGoogle Scholar
  13. 13.
    Simal S, Femenia A, Garau MC, Rossello C (2005) Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J Food Eng 66:323–328CrossRefGoogle Scholar
  14. 14.
    Simal S, Femenia A, Carcel JA, Rossello C (2005) Mathematical modelling of the drying curves of kiwi fruits: influence of the ripening stage. J Sci Food Agric 85:425–432CrossRefGoogle Scholar
  15. 15.
    Diamante LM, Ihns R, Savage GP, Vanhanen L (2010) A new mathematical model for thin layer drying of fruits. Int J Food Sci Technol 45:1956–1962CrossRefGoogle Scholar
  16. 16.
    Mohammadi A, Rafiee S, Keyhani A, Emam Djomeh Z (2009) Moisture content modeling of sliced kiwifruit (cv. Hayward) during drying. Pak J Nutr 8(1):78–82CrossRefGoogle Scholar
  17. 17.
    Shahi MMN, Mokhtarian M, Entezari A (2014) Optimization of thin layer drying kinetics of kiwi fruit slices using genetic algorithm. Adv Nat Appl Sci 8(11):11–19Google Scholar
  18. 18.
    O’Connor-Shaw RE, Roberts R, Ford AL, Nottingham SM (1994) Shelf-life of minimally processed honeydew, kiwifruit, papaya, pineapple and cantaloupe. J Food Sci 59(6):1202–1206 1215CrossRefGoogle Scholar
  19. 19.
    AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, WashingtonGoogle Scholar
  20. 20.
    ASAE (1983) Moisture measurement-peanuts. In: ASAE standard of ASAE S.410.1. Agricultural Engineering Yearbook of Standards, pp 329–331Google Scholar
  21. 21.
    Mohammadi A, Rafiee S, Keyhani A, Emam Djomeh Z (2008) Estimation of thin layer drying characteristics of kiwifruit (cv. Hayvard) with use of Page’s Model. Am-Euras J Agric Environ Sci 3(5):802–805Google Scholar
  22. 22.
    Sadin R, Chegini GR, Sadin H (2014) The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat Mass Transf 50:501–507CrossRefGoogle Scholar
  23. 23.
    Demiray E, Tulek Y (2012) Thin layer drying of tomato (Lycopersicum esculentum Mill. Cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transf 48:841–847CrossRefGoogle Scholar
  24. 24.
    Lomauro CJ, Bakshi AS, Labuza TP (1985) Moisture transfer properties of dry and semimoist foods. J Food Sci 50:397–400CrossRefGoogle Scholar
  25. 25.
    Demiray E, Tulek Y (2014) Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat Mass Transf 50(6):779–786CrossRefGoogle Scholar
  26. 26.
    Pala M, Mahmutoglu T, Saygi B (1996) Effects of pretreatments on quality of open-air and solar dried apricots. Mol Nutr Food Res 10:137–141Google Scholar
  27. 27.
    Nuh DD, Brinkworth BJ (1997) A novel thin layer model for crop drying. Trans Am Soc Agric Eng 40:659–669CrossRefGoogle Scholar
  28. 28.
    Sacilik K (2007) Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J Food Eng 79:23–30CrossRefGoogle Scholar
  29. 29.
    Holman JP (2011) Experimental methods for engineers, 8th edn. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    Orikasa T, Wu L, Shiina T, Tagawa A (2008) Drying characteristics of kiwifruit during hot air drying. J Food Eng 85:303–308CrossRefGoogle Scholar
  31. 31.
    Zogzas NP, Maroulis ZB, Marinos-Kouris D (1996) Moisture diffusivity data compilation in foodstuffs. Dry Technol 14:2225–2253CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Faculty of EngineeringSelçuk UniversityKonyaTurkey
  2. 2.Mechanical Education Department, Faculty of Technical EducationSelçuk UniversityKonyaTurkey

Personalised recommendations