Advertisement

Heat and Mass Transfer

, Volume 50, Issue 8, pp 1065–1080 | Cite as

Numerical design of a Knudsen pump with curved channels operating in the slip flow regime

  • Vlasios Leontidis
  • Jie Chen
  • Lucien Baldas
  • Stéphane Colin
Original

Abstract

A numerical procedure has been developed for modeling 2D thermal creep flows with Fluent®. Complete first order velocity slip, including thermal creep and walls curvature effects, as well as temperature jump, boundary conditions, are implemented via C routines. After validation on benchmark flows, the technique is used for designing a Knudsen pump with curved microchannels and it is demonstrated that this micropump can be efficient in the slip flow regime.

Keywords

Mass Flow Rate Velocity Slip Knudsen Number Temperature Jump Straight Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement GASMEMS no 215504. The authors thank Prof. Luc Mieussens and Prof. Kazuo Aoki for the provided comments and tabulated data from their published works.

References

  1. 1.
    Hobson JP, Salzman DB (2000) Review of pumping by thermal molecular pressure. J Vac Sci Technol A 18:1758–1765CrossRefGoogle Scholar
  2. 2.
    Nguyen N-T, Huang X, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng 124:384–392CrossRefGoogle Scholar
  3. 3.
    Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRefGoogle Scholar
  4. 4.
    Tsai N-C, Sue C-Y (2007) Review of MEMS-based drug delivery and dosing systems. Sens Actuator A Phys 134:555–564CrossRefGoogle Scholar
  5. 5.
    Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1:268–279. doi: 10.1007/s10404-004-0002-y Google Scholar
  6. 6.
    Bird GA (1998) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, OxfordGoogle Scholar
  7. 7.
    Karniadakis GE, Beskok A, Aluru NR (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New YorkGoogle Scholar
  8. 8.
    Scanlon TJ, Roohi E, White C, Darbandi M, Reese JM (2010) An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Comput Fluid 39:2078–2089CrossRefzbMATHGoogle Scholar
  9. 9.
    Reynolds O (1879) On certain dimensional properties of matter in the gaseous state. Philos Trans R Soc Lond 170:727–845. doi: 10.1098/rstl.1879.0078 CrossRefGoogle Scholar
  10. 10.
    York DC, Chambers A, Chew AD, Troup AP (1999) Measurement of thermal transpiration across an array of parallel capillaries using a differential capacitance manometer. Vacuum 55:133–139CrossRefGoogle Scholar
  11. 11.
    Han Y-L, Muntz EP, Alexeenko A, Young M (2007) Experimental and computational studies of temperature gradient driven molecular transport in gas flows through nano/microscale channels. Nanoscale Microscale Thermophys Eng 11:151–175CrossRefGoogle Scholar
  12. 12.
    Rojas Cardenas M, Graur I, Perrier P, Meolans JG (2011) Thermal transpiration flow: a circular cross-section microtube submitted to a temperature gradient. Phys Fluid 23:031702CrossRefGoogle Scholar
  13. 13.
    Sone Y, Waniguchi Y, Aoki K (1996) One-way flow of a rarefied gas induced in a channel with a periodic temperature distribution. Phys Fluid 8:2227–2235CrossRefzbMATHGoogle Scholar
  14. 14.
    Alexeenko AA, Gimelshein SF, Muntz EP, Ketsdever AD (2006) Kinetic modeling of temperature driven flows in short microchannels. Int J Therm Sci 45:1045–1051. doi: 10.1016/j.ijthermalsci.2006.01.014 CrossRefGoogle Scholar
  15. 15.
    Aoki K, Degond P, Mieussens L, Takata S, Yoshida H (2008) A diffusion model for rarefied flows in curved channels. Multiscale Model Sim 6:1281–1316. doi: 10.1137/070690328 CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Aoki K, Degond P, Mieussens L (2009) Numerical simulations of rarefied gases in curved channels: thermal creep, circulating flow, and pumping effect. Commun Comput Phys 6:919–954CrossRefGoogle Scholar
  17. 17.
    Méolans JG, Graur IA (2008) Continuum analytical modelling of thermal creep. Eur J Mech B Fluid 27:785–809CrossRefzbMATHGoogle Scholar
  18. 18.
    Maxwell JC (1879) On stresses in rarefied gases arising from inequalities of temperature. Philos Trans R Soc 170:231–256CrossRefzbMATHGoogle Scholar
  19. 19.
    Pham-Van-Diep G, Keely P, Muntz EP, Weaver DP (1995) A micromachined Knudsen compressor. Proceedings of the 19th international symposium on rarefied gas dynamics, London, pp 715–721Google Scholar
  20. 20.
    Vargo SE, Muntz EP (1996) A simple micromachined compressor and vacuum pump for flow control and other distributed applications. Proceedings of the 34th aerospace sciences meeting and exhibit, Reno, pp 1–15Google Scholar
  21. 21.
    Young RM (1999) Analysis of a micromachine based vacuum pump on a chip actuated by the thermal transpiration effect. J Vac Sci Technol B 17:280–287CrossRefGoogle Scholar
  22. 22.
    McNamara S, Gianchandani YB (2005) On-chip vacuum generated by a micromachined Knudsen pump. IEEE J Microelectromech Syst 14:741–746CrossRefGoogle Scholar
  23. 23.
    Sugimoto H (2009) Experiment on the gas separation effect of the pump driven by the thermal edge flow. In: Abe T (ed) Rarefied gas dynamics: 26th international symposium American Institute of Physics, pp 1123–1128Google Scholar
  24. 24.
    Han YL, Muntz EP (2007) Experimental investigation of micro-mesoscale Knudsen compressor performance at low pressures. J Vac Sci Technol B 25:703–714. doi: 10.1116/1.2723755 CrossRefGoogle Scholar
  25. 25.
    Gupta NK, Gianchandani YB (2008) Thermal transpiration in zeolites: a mechanism for motionless gas pumps. Appl Phys Lett 93. doi: 10.1063/1.3025304
  26. 26.
    Pharas K, McNamara S (2010) Knudsen pump driven by a thermoelectric material. J Micromech Microeng 20:125032CrossRefGoogle Scholar
  27. 27.
    Gupta NK, Gianchandani YB (2011) Porous ceramics for multistage Knudsen micropumps: modeling approach and experimental evaluation. J Micromech Microeng 21:095029CrossRefGoogle Scholar
  28. 28.
    Aoki K, Takata S, Tatsumi E, Yoshida H (2010) Rarefied gas flows through a curved channel: application of a diffusion-type equation. Phys Fluid 22 doi:  10.1063/1.3496315
  29. 29.
    Takata S, Umetsu H (2011) Numerical study on effective configurations of the Knudsen pump for separation and compression. 27th international symposium on rarefied gas dynamics, 2010. Pts One Two 1333:998–1003. doi: 10.1063/1.3562776 Google Scholar
  30. 30.
    O’Hare L, Lockerby DA, Reese JM, Emerson DR (2007) Near-wall effects in rarefied gas micro-flows: some modern hydrodynamic approaches. Int J Heat Fluid Flow 28:37–43CrossRefGoogle Scholar
  31. 31.
    Dongari N, Zhang Y, Reese JM (2011) Modeling of Knudsen layer effects in micro/nanoscale gas flows. J Fluid Eng 133:071101CrossRefGoogle Scholar
  32. 32.
    Colin S (2012) Gas microflows in the slip flow regime: a critical review on convective heat transfer. J Heat Trans-Trans ASME 134:020908. doi: 10.1115/1.4005063 CrossRefGoogle Scholar
  33. 33.
    Barber RW, Sun Y, Gu X-J, Emerson DR (2004) Isothermal slip flow over curved surfaces. Vacuum 76:73–81CrossRefGoogle Scholar
  34. 34.
    Lockerby DA, Reese JM, Emerson DR, Barber RW (2004) Velocity boundary condition at solid walls in rarefied gas calculations. Phys Rev E 70:017303CrossRefGoogle Scholar
  35. 35.
    Sharipov F (2011) Data on the velocity slip and temperature jump on a gas-solid interface. J Phys Chem Ref Data 40:023101CrossRefGoogle Scholar
  36. 36.
    Leontidis V, Brandner JJ, Baldas L, Colin S (2012) Numerical analysis of thermal creep flow in curved channels for designing a prototype of Knudsen micropump. J Phys Conf Ser 362:012004. doi: 10.1088/1742-6596/362/1/012004 CrossRefGoogle Scholar
  37. 37.
    Kandlikar SG, Garimella S, Li D, Colin S, King MR (2013) Heat transfer and fluid flow in minichannels and microchannels, 2nd edn. Elsevier, OxfordGoogle Scholar
  38. 38.
    Pitakarnnop J, Geoffroy S, Colin S, Baldas L (2008) Slip flow in triangular and trapezoidal microchannels. Int J Heat Technol 26:167–174Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vlasios Leontidis
    • 1
  • Jie Chen
    • 1
  • Lucien Baldas
    • 1
  • Stéphane Colin
    • 1
  1. 1.INSA, UPS, Mines Albi, ISAE, ICA (Institut Clément Ader)Université de ToulouseToulouseFrance

Personalised recommendations