Advertisement

Heat and Mass Transfer

, Volume 49, Issue 1, pp 129–145 | Cite as

A new heat transfer analysis in machining based on two steps of 3D finite element modelling and experimental validation

  • B. Haddag
  • T. Kagnaya
  • M. Nouari
  • T. Cutard
Original

Abstract

Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.

Keywords

Heat Flux Heat Diffusion Thermal Boundary Condition Chip Morphology Interface Heat Transfer Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

Cutting parameters

Vc

Cutting speed (m/min)

f

Feed rate (mm/tr)

ap

Depth of cut (mm)

κr

Approach angle (°)

γo

Tool-rake angle (°)

λs

Inclination angle (°)

αo

Clearance angle (°)

Fc

Cutting cut force component (N)

Ff

Feed force component (N)

Fp

Depth of cut force component (N)

FR

Resultant cutting force (N)

Mechanical quantities

σ

Cauchy stress tensor (MPa)

fv

Body force density vector (N/m3)

\( \ddot{u} \)

Acceleration vector (m/s2)

ρ

Material density (kg/m3)

E

Young modulus (GPa)

v

Poisson’s ratio

A

Initial uniaxial tension stress at reference equivalent plastic strain-rate and reference temperature of the workmaterial (MPa)

B

Strain hardening parameter of the workmaterial (MPa)

n

Strain hardening exponent parameter of the workmaterial

C

Strain-rate sensitivity parameter of the workmaterial

m

Temperature sensitivity parameter of the workmaterial

\( \bar{\varepsilon }^{p} \)

von Mises equivalent plastic strain

\( \dot{\bar{\varepsilon }}^{p} \)

von Mises equivalent plastic strain-rate

\( \dot{\bar{\varepsilon }}_{0} \)

Reference equivalent plastic strain-rate

\( \bar{\sigma } \)

von Mises equivalent stress (MPa)

σn

Normal friction stress (MPa)

τf

Shear friction stress (MPa)

μ

Friction coefficient

τmax

Shear stress limit (MPa)

\( \bar{\tau }_{f} \)

Average sliding stress at the tool-chip interface (MPa)

\( \bar{\dot{\gamma }} \)

Average sliding velocity at the tool-workpiece interface (m/s)

τ(x,y)

Local sliding stress at the tool-workpiece interface (MPa)

\( \dot{\gamma }\left( {x,y} \right) \)

Local sliding velocity at the tool-workpiece interface (m/s)

Ux

Displacement along the x axis

Uy

Displacement along the y axis

Uz

Displacement along the z axis

Thermal quantities

T

Temperature (°C)

T0

Reference ambient temperature (°C)

Tm

Workmaterial melting temperature (°C)

Tenv

Environment temperature (°C)

Ttool

Tool temperature (°C)

Thold

Toolholder temperature (°C)

Tint-w

Interface workpiece temperature (°C)

Tint-t

Interface tool temperature (°C)

λ

Thermal conductivity (W/m/°C)

cp

Specific heat capacity (J/kg/°C)

α

Thermal expansion (µm/m/°C)

ηp

Plastic work conversion factor (Taylor-Quinney factor)

ff

Fraction of the friction energy conducted into the tool

h

Heat transfer coefficient for the tool-wokpiece interface (kW/m2/°C)

henv-tool

Heat transfer coefficient for the tool-environment interface (W/m2/°C)

hhold-tool

Heat transfer coefficient for the toolhorder-tool interface (W/m2/°C)

\( \dot{q}_{v} \)

Volumetric heat generation in the workmaterial (W/m3)

\( \dot{q}_{p} \)

Volumetric heat generation due to plastic work (W/m3)

\( \dot{q}_{f} \)

Frictional heat flux at the tool-workpiece interface (W/m2)

\( \dot{q}_{c} \)

Heat conduction flux at the tool-workpiece interface (W/m2)

\( \dot{q}_{ \to tool} \)

Heat flux going into the tool at the tool-workpiece interface (W/m2)

\( \dot{q}_{ \to workpiece} \)

Heat flux going into the workpiece at the tool-workpiece interface (W/m2)

\( \dot{q}_{ \to env} \)

Heat flux at the tool-environment interface (W/m2)

\( \dot{q}_{ \to hold} \)

Heat flux at the toolholder-tool interface (W/m2)

\( \bar{\dot{q}}_{ \to tool} \)

Applied uniform heat flux on the tool rake face (W/m2)

\( \dot{q}_{ \to tool} \left( {x,y} \right) \)

Applied non-uniform heat flux on the tool rake face (W/m2)

References

  1. 1.
    Molinari A, Moufki A (2008) The Merchant’s model of orthogonal cutting revisited: a new insight into the modelling of chip formation. Int J Mech Sci 50:124–131CrossRefGoogle Scholar
  2. 2.
    Ozlu E, Budak E, Molinari A (2009) Analytical and experimental investigation of rake contact and friction behaviour in metal cutting. Int J Mach Tools Manuf 49:865–875CrossRefGoogle Scholar
  3. 3.
    Xie JQ, Byoumi AE, Zbib HM (1996) A study on shear banding in chip formation of orthogonal machining. Int J Mach Tools Manuf 36:835–847CrossRefGoogle Scholar
  4. 4.
    Pawade RS, Sonawane HA, Joshi SS (2009) An analytical model to predict specific shear energy in high-speed turning of Inconel 718. Int J Mach Tools Manuf 49:979–990CrossRefGoogle Scholar
  5. 5.
    Moufki A, Molinari A, Dudzinski D (1998) Modelling of orthogonal cutting with a temperature dependent friction law. J Mech Phys Solids 46(10):2103–2138zbMATHCrossRefGoogle Scholar
  6. 6.
    Grzesik W (2006) Composite layer-based analytical models for tool–chip interface temperatures in machining medium carbon steels with multi-layer coated cutting tools. J Mater Process Technol 176:102–110CrossRefGoogle Scholar
  7. 7.
    Komanduri R, Hou ZB (2000) Thermal modelling of the metal cutting process—part I: temperature rise distribution due to shear plane heat source. Int J Mech Sci 42:1715–1752zbMATHCrossRefGoogle Scholar
  8. 8.
    Komanduri R, Hou ZB (2001) Thermal modelling of the metal cutting process—part II: temperature rise distribution due to frictional heat source at the tool-chip interface. Int J Mech Sci 43:57–88zbMATHCrossRefGoogle Scholar
  9. 9.
    Komanduri R, Hou ZB (2001) Thermal modelling of the metal cutting process—part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source. Int J Mech Sci 43:89–107CrossRefGoogle Scholar
  10. 10.
    Ceretti E, Lucchi M, Atlan T (1999) FEM simulation of orthogonal cutting: serrated chip formation. J Mater Process Technol 95:17–26CrossRefGoogle Scholar
  11. 11.
    Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155–156:1350–1356CrossRefGoogle Scholar
  12. 12.
    Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150:124–133CrossRefGoogle Scholar
  13. 13.
    Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Methods Eng 38:3675–3694zbMATHCrossRefGoogle Scholar
  14. 14.
    Mabrouki T, Girardin F, Asad M, Rigal J-F (2008) Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024–T351). Int J Mach Tools Manuf 48:1187–1197CrossRefGoogle Scholar
  15. 15.
    Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4 V. Int J Mach Tools Manuf 48:275–288CrossRefGoogle Scholar
  16. 16.
    Sima M, Özel T (2010) Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4 V. Int J Mach Tools Manuf 50:943–960CrossRefGoogle Scholar
  17. 17.
    Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150:124–133CrossRefGoogle Scholar
  18. 18.
    Grzesik W (2006) Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique. Int J Mach Tools Manuf 46:651–658CrossRefGoogle Scholar
  19. 19.
    Ulutan D, Lazoglu I, Dinc C (2009) Three-dimensional temperature predictions in machining processes using finite difference method. J Mater Process Technol 209:1111–1121CrossRefGoogle Scholar
  20. 20.
    Lazoglu I, Altintas Y (2002) Prediction of tool and chip temperature in continuous and interrupted machining. Int J Mach Tools Manuf 42:1011–1022CrossRefGoogle Scholar
  21. 21.
    Atlati S, Haddag B, Nouari M, Zenasni M (2011) Analysis of a new segmentation intensity ratio “SIR” to characterize the chip segmentation process in machining ductile metals. Int J Mach Tools and Manuf 51(9):687–700CrossRefGoogle Scholar
  22. 22.
    Limido J, Espinosa C, Salaün M, Lacome JL (2007) SPH method applied to high speed cutting modelling. Int J Mech Sci 49:898–908CrossRefGoogle Scholar
  23. 23.
    Kagnaya MT (2009) Contribution à l’identification des mécanismes d’usure d’un WC-6 %Co en usinage et par une approche tribologique et thermique. PHD Thesis of Ecole Supérieur des Mines de ParisGoogle Scholar
  24. 24.
    Bono M, Nib J (2006) The location of the maximum temperature on the cutting edges of a drill. Int J Mach Tools Manuf 46:901–907CrossRefGoogle Scholar
  25. 25.
    Liu GJ, Tan G, Li G (2009) Experiment, modeling, and analysis for temperature field of milling insert. Int J Adv Manuf Technol 40:63–67CrossRefGoogle Scholar
  26. 26.
    Stephenson DA, Jen T-C, Lavine AS (1997) Cutting tool temperatures in contour turning: transient analysis and experimental verification. Trans ASME 119:494–501CrossRefGoogle Scholar
  27. 27.
    Liu J, Chou YK (2007) Cutting tool temperature analysis in heat-pipe assisted composite machining. Trans ASME 129:902CrossRefGoogle Scholar
  28. 28.
    Tieu AK, Fang XD, Zhang D (1998) FE analysis of cutting tool temperature field with adhering layer formation. Wear 214:252–258CrossRefGoogle Scholar
  29. 29.
    Ramesha M, Seetharamua KN, Ganesanb N, Kuppuswamy G (1999) Finite element modeling of heat transfer analysis in machining of isotropic materials. Int J Heat Mass Transf 42:1569–1583CrossRefGoogle Scholar
  30. 30.
    Chang CS (2007) Prediction of the cutting temperatures of stainless steel with chamfered main cutting edge tools. J Mater Process Technol 190:332–341CrossRefGoogle Scholar
  31. 31.
    Filice L, Umbrello D, Beccari S, Micari F (2006) On the FE codes capability for tool temperature calculation in machining processes. J Mater Process Technol 174:286–292CrossRefGoogle Scholar
  32. 32.
    Umbrello D, Filice L, Rizzuti S, Micari F, Settineri L (2007) On the effectiveness of finite element simulation of orthogonal cutting with particular reference to temperature prediction. J Mater Process Technol 189:284–291CrossRefGoogle Scholar
  33. 33.
    Carvalho SR, Lima e Silva SMM, Machado AR, Guimaraes G (2006) Temperature determination at the chip–tool interface using an inverse thermal model considering the tool and tool holder. J Mater Process Technol 179:97–104CrossRefGoogle Scholar
  34. 34.
    Rech J, Kusiak A, Battaglia JL (2004) Tribological and thermal functions of cutting tool coatings. Surf Coat Technol 186:364–371CrossRefGoogle Scholar
  35. 35.
    Lazard M, Corvisier P (2004) Modeling of a tool during turning—analytical prediction of the temperature and of the heat flux at the tool’s tip. Appl Thermal Eng 24:839–849CrossRefGoogle Scholar
  36. 36.
    Battaglia JL, Batsale JC (2000) Estimation of heat flux and temperature in a tool during turning, Inv Probl Eng 1–23Google Scholar
  37. 37.
    Deform™—3D Version 10.1 (2010) Scientific Forming Technologies CorporationGoogle Scholar
  38. 38.
    Abaqus™—Standard Version (2009) Documentation for version 6.9. Dassault Systems SimuliaGoogle Scholar
  39. 39.
    Barlier C, Procédé pour la détection directe, en continu, de l’usure des outils de coupe par sonde électrique incorporée, Brevet BARLIER no. 87 07969 (France) and 88-470021-2 (Europe)Google Scholar
  40. 40.
    Barlier C, Lescalier C, Muller J.M, Delebecque B (1996) Mesure en continu de l’usure des outils de coupe par microsondes incorporées—acquisition par capteur de temperature appliquee a la recherche de l’usure—le système ACTARUS®, First International Conference on Integrated Design and Manufacturing in Mechanical Engineering, NantesGoogle Scholar
  41. 41.
    Jaspers SPFC, Dautzenberg JH, Taminiau DA (1998) Temperature measurement in orthogonal metal cutting. Int J Adv Manuf Technol 14:7–12CrossRefGoogle Scholar
  42. 42.
    Ueda T, A1-Huda M, Yamada K, Nakayama K (1999) Temperature measurement of CBN tool in turning of high hardness steel. Annals of the CIRP 48/1Google Scholar
  43. 43.
    Müller B, Renz U (2003) Time resolved temperature measurements in manufacturing. Measurement 34:363–370CrossRefGoogle Scholar
  44. 44.
    Sutter G, Ranc N (2007) Temperature fields in a chip during high-speed orthogonal cutting—an experimental investigation. Int J Mach Tools Manuf 47:1507–1517CrossRefGoogle Scholar
  45. 45.
    Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48CrossRefGoogle Scholar
  46. 46.
    Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. J Mater Process Technol 122:322–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Laboratoire d’Énergétique et de Mécanique Théorique et AppliquéeUniversité de Lorraine, LEMTA CNRS-UMR 7563, Mines NancySt-Dié-des-VosgesFrance
  2. 2.Mines Albi, ICA (Institut Clément Ader)Université de ToulouseAlbi cedex 09France

Personalised recommendations