Heat and Mass Transfer

, Volume 49, Issue 1, pp 41–54

Numerical feasibility study of utilizing nanofluids in laminar natural convection inside enclosures

Original

Abstract

Laminar natural convective heat transfer of nanofluids inside an enclosure is numerically investigated considering the thermal dispersion effect of the nanoparticles. Feasibility of applying nanofluids instead of pure liquids in natural convective, which is a discrepancy issue between the previous numerical and experimental works, is examined. Results confirm the previous experimental results of general deterioration in heat transfer rate. Discussions, justifications and correlations for average Nusselt number are presented.

References

  1. 1.
    Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows. FED-vol 231/MD, vol 66. ASME, New York, pp 99–105Google Scholar
  2. 2.
    Eastman JA, Choi SUS, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRefGoogle Scholar
  3. 3.
    Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64CrossRefGoogle Scholar
  4. 4.
    Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3663MATHCrossRefGoogle Scholar
  5. 5.
    Jou RY, Tzeng SC (2006) Numerical research of nature convective heat transfer enhancement. Int Commun Heat Mass Transf 33:727–736CrossRefGoogle Scholar
  6. 6.
    Oztop HF, Abu-Nada E (2008) Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow 29:1326–1336CrossRefGoogle Scholar
  7. 7.
    Öğüt EB (2009) Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int J Therm Sci 48:2063–2073CrossRefGoogle Scholar
  8. 8.
    Mahmoodi M (2011) Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int J Therm Sci 50:1731–1740CrossRefGoogle Scholar
  9. 9.
    Santra AK, Sen S, Chakraborty N (2008) Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid. Int J Therm Sci 47:1113–1122CrossRefGoogle Scholar
  10. 10.
    Putra N, Roetzel W, Das SK (2003) Natural convective of nanofluids. Heat Mass Transf 39:775–784CrossRefGoogle Scholar
  11. 11.
    Wen D, Ding Y (2005) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26:855–864CrossRefGoogle Scholar
  12. 12.
    Li CH, Peterson GP (2010) Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids). Adv Mech Eng, Article ID 742739. doi:10.1155/2010/742739
  13. 13.
    Ho CJ, Liu WK, Chang YS, Lin CC (2010) Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49:1345–1353CrossRefGoogle Scholar
  14. 14.
    Li Y, Zhou J, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196:89–101CrossRefGoogle Scholar
  15. 15.
    Maxwell JC (1904) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, Cambridge, pp 435–441Google Scholar
  16. 16.
    Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191CrossRefGoogle Scholar
  17. 17.
    Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRefGoogle Scholar
  18. 18.
    Xue Q, Xu W (2005) A model of thermal conductivity of nanofluids with interfacial shells. Chem Phys 90:298–301Google Scholar
  19. 19.
    Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48:2926–2932MATHCrossRefGoogle Scholar
  20. 20.
    Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254CrossRefGoogle Scholar
  21. 21.
    Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043CrossRefGoogle Scholar
  22. 22.
    Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRefGoogle Scholar
  23. 23.
    Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661MATHCrossRefGoogle Scholar
  24. 24.
    Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574CrossRefGoogle Scholar
  25. 25.
    Vajjha RS, Das DK (2009) Determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf 52:4675–4682MATHCrossRefGoogle Scholar
  26. 26.
    Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(15):153107:1–3Google Scholar
  27. 27.
    Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595CrossRefGoogle Scholar
  28. 28.
    Jang SP, Choi SUS (2007) Effects of various parameters on nanofluid thermal conductivity. J Heat Transf 129:617–623CrossRefGoogle Scholar
  29. 29.
    Murshed SMS, Leong KC, Yang C (2009) A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng 29:2477–2483CrossRefGoogle Scholar
  30. 30.
    Chandrasekar M, Suresh S, Chandra Bose A (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 34:210–216CrossRefGoogle Scholar
  31. 31.
    Corcione M (2010) Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci 49:1536–1546CrossRefGoogle Scholar
  32. 32.
    Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27(2):569–580. doi:10.1007/s10765-006-0054-1 MATHCrossRefGoogle Scholar
  33. 33.
    Einstein A (1906) Eine neue Bestimmung der Moleku, ldimensionen. Ann Phys 19:289–306MATHCrossRefGoogle Scholar
  34. 34.
    Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152CrossRefGoogle Scholar
  35. 35.
    Frankel NA, Acrivos A (1967) On the viscosity of a concentrate suspension of solid spheres. Chem Eng Sci 22:847–853CrossRefGoogle Scholar
  36. 36.
    Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41:4626–4627CrossRefGoogle Scholar
  37. 37.
    Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117MathSciNetCrossRefGoogle Scholar
  38. 38.
    Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Bouche S, Mintsa AH (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids—Hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506CrossRefGoogle Scholar
  39. 39.
    Ghasemi B, Aminossadati SM (2010) Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux. Int J Therm Sci 49:1–9CrossRefGoogle Scholar
  40. 40.
    Godso L, Raja B, Lal MD, Wongwises S (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev 14:629–641CrossRefGoogle Scholar
  41. 41.
    Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018MATHCrossRefGoogle Scholar
  42. 42.
    Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707MATHCrossRefGoogle Scholar
  43. 43.
    Kaviany M (1995) Principles of heat transfer in porous media. Springer, New YorkMATHCrossRefGoogle Scholar
  44. 44.
    Mokmeli A, Saffar-Avval M (2010) Prediction of nanofluid convective heat transfer using the dispersion model. Int J Therm Sci 49:471–478CrossRefGoogle Scholar
  45. 45.
    Amiri A, Vafai K (1994) Analysis of dispersion effects and nonthermal equilibrium, non-Darcian, variable porosity, incompressible flow through porous media. Int J Heat Mass Transf 37:939–954CrossRefGoogle Scholar
  46. 46.
    Bhattacharyya TK (1997) Free convection in channel—an alternative numerical approach and illustrations. Commun Numer Methods Eng 13:387–396MATHCrossRefGoogle Scholar
  47. 47.
    De Vahl DavisG (1962) Natural convection of air in a square cavity, a benchmark numerical solution. Int J Numer Methods Fluids 3:249–264Google Scholar
  48. 48.
    Markatos NC, Pericleous KA (1984) Laminar and turbulent natural convection in an enclosed cavity. Int J Heat Mass Transf 27:772–775Google Scholar
  49. 49.
    Fusegi T, Hyun JM, Kuwahara K, Farouk B (1991) A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int J Heat Mass Transf 34:1543–1557CrossRefGoogle Scholar
  50. 50.
    Barakos G, Mitsoulis E (1994) Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int J Numer Methods Fluids 18:695–719MATHCrossRefGoogle Scholar
  51. 51.
    Krane RJ, Jessee J (1983) Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: Proceedings of the first ASME-JSME thermal engineering joint conference, vol 1, pp 323–329Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Mechanical Engineering Department, College of EngineeringQassim UniversityBuraidahKSA
  2. 2.Mechanical Power Engineering Department, Faculty of EngineeringTanta UniversityTantaEgypt

Personalised recommendations