Heat and Mass Transfer

, 44:1549 | Cite as

Thermal analysis of thin layer boilover

  • Bulent KozanogluEmail author
  • Fabio Ferrero
  • Miguel Muñoz
  • Josep Arnaldos
  • Joaquim Casal


A mathematical model is developed to simulate the thin layer boilover phenomenon. This model takes into account convective currents as well as conduction and radiation absorption through the fuel layer and is resolved numerically employing a scheme of Runge–Kutta, combined with the numerical method of lines. Solutions of the model showed a good agreement with the experimental data, both from this work and by other authors, demonstrating the importance of the convective currents. The model provided velocities of these currents, of the same order of magnitude as the values reported in the technical literature. Thickness of the remaining fuel and the interface temperature are correctly calculated by the model, allowing the prediction of the time required for the boilover to start.


Heat Flux Initial Thickness Convection Velocity Radiation Absorption Radiation Heat Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


absorption coefficient through fuel (m−1)


absorption coefficient through water (m−1)


specific heat of fuel (J/kg K)


specific heat of water (J/kg K)


pool diameter (m)


thickness of the fuel layer (mm)


initial thickness of the fuel layer (mm)


thickness of the remaining fuel (mm)


radiative heat flux (W/m2)


radiative heat flux reaching the water layer (W/m2)


total heat flux (W/m2)


thermal conductivity of fuel (W/mK)


thermal conductivity of water (W/mK)


latent heat of fuel (J/kg)

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{m} \)

combustion rate (kg/s m2)


fuel temperature (K)


temperature of flash point (K)


interface temperature (K)


ambient temperature (K)


water temperature (K)


time (s)


convective current velocity (mm/s)


combustion velocity (mm/s)


vertical distance from the fuel–water interface (m)

Greek symbols


fuel density (kg/m3)


water density (kg/m3)



The authors acknowledge the funding from the Spanish Ministerio de Ciencia y Tecnología (Project no. PPQ2002-00572). One of the authors, Bulent Kozanoglu, acknowledges the funding from the Institució Catalana de Recerca i Estudis Avançats (ICREA).


  1. 1.
    Arai M, Saito K, Altenkirch RA (1990) A study of boilover in liquid pool fires supported on water. Part I: effects of a water sublayer on pool fires. Combust Sci Technol 71:25–40CrossRefGoogle Scholar
  2. 2.
    Bond J (1991) Sources of ignition, flammability characteristics of chemicals and products, 1st edn. Butterworth-Heinemann, LondonGoogle Scholar
  3. 3.
    Broeckman B, Schecker HG (1992) Boilover: effects in burning oil-tanks. In: 7th International symposium loss prevention and safety promotion in the process industries, ItaliaGoogle Scholar
  4. 4.
    Broeckman B, Schecker HG (1995) Heat transfer mechanisms and boilover in burning oil–water systems. J Loss Prev Process Ind 8(3):137–147CrossRefGoogle Scholar
  5. 5.
    Brzustowski TA, Twardus EM (1982) A study of burning of a slick of crude oil on water. Proc Combust Inst 19:847–854Google Scholar
  6. 6.
    Casal J, Montiel H, Planas E, Vílchez JA (2001) Análisis del Riesgo en Instalaciones Industriales, Alfaomega, Bogota, p 142Google Scholar
  7. 7.
    Chatris JM, Planas E, Arnaldos J, Casal J (2001a) Effects of thin-layer boilover on hydrocarbon pool fires. Combust Sci Technol 171:141–161CrossRefGoogle Scholar
  8. 8.
    Chatris JM, Quintela J, Folch J, Planas E, Arnaldos J, Casal J (2001b) Experimental study of burning rate in hydrocarbon pool fires. Combust Flame 126(1):1373–1383CrossRefGoogle Scholar
  9. 9.
    Evans D, Baum H, McCaffrey B, Mulholland G, Harkleroad M, Manders W (1986) Combustion of oil on water. Report no. NBSIR 86-3420, Natonal Bureau of StandardsGoogle Scholar
  10. 10.
    Ferrero F, Munoz M, Kozanoglu B, Casal J, Arnaldos J (2006) Experimental study of thin-layer boilover in large-scale pool fires. J Hazard Mater 137(3):1293–1302CrossRefGoogle Scholar
  11. 11.
    Ferrero F, Kozanoglu B, Arnaldos J (2007) A correlation to estimate the velocity of convective currents in boilover. J Hazard Mater 143(1):587–589CrossRefGoogle Scholar
  12. 12.
    Garo JP, Vantelon JP, Fernández-Pello AC (1994) Boilover burning of oil spilled on water. Proc Combust Inst 25:1481–1488Google Scholar
  13. 13.
    Garo JP, Vantelon JP, Fernández-Pello AC (1996) Effect of the fuel boiling point on the boilover burning of liquid fuels spilled on water. Proc Combust Inst 26:1461–1467Google Scholar
  14. 14.
    Garo JP, Gillard P, Vantelon JP, Fernández-Pello AC (1999) Combustion of liquid fuels spilled on water. Prediction of time to start of boilover. Combust Sci Technol 147:39–59CrossRefGoogle Scholar
  15. 15.
    Garo JP, Vantelon JP (1999) Thin layer boilover of pure or multicomponet fuels. Prev. Hazard. Fires explosions, pp 167–182Google Scholar
  16. 16.
    Garo JP, Vantelon JP, Koseki H (2006) Thin-layer boilover: prediction of its onset and intensity. Combust Sci Technol 178(7):1217–1235CrossRefGoogle Scholar
  17. 17.
    Hall HH (1925) Oil-tank-fire boilover. Mech Eng 47(7):540Google Scholar
  18. 18.
  19. 19.
    Inamura T, Saito K, Tagawi KA (1992) A study of boilover in liquid pool fires supported on water. Part II effects of in-depth radiation absorption. Combust Sci Technol 86:105–119CrossRefGoogle Scholar
  20. 20.
    Ito A, Saito K, Inamura T (1992) Holographic interferometry temperature measurements in liquids for pool fires supported on water. J Heat Trans 114:944–949CrossRefGoogle Scholar
  21. 21.
    Jordan H (2007) An inverse Stefan problem relevant to boilover: heat balance integral solutions and analysis. Therm Sci 11(2):141–160CrossRefGoogle Scholar
  22. 22.
    Koseki H, Kokkala M, Mulholland GW (1991) Experimental study of boilover in crude oil fires. Fire safety science, 3. In: Proceedings of the 3rd international symposium, pp 865–874Google Scholar
  23. 23.
    Koseki H (1994) Boilover and crude oil fire. J Appl Fire Sci 3(3):243–272Google Scholar
  24. 24.
    Muñoz M, Arnaldos J, Casal J, Planas E (2004) Analysis of the geometric and radiative characteristics of hydrocarbon pool fires. Combust Flame 139(3):263–277CrossRefGoogle Scholar
  25. 25.
    Petty SE (1983) Combustion of crude oil on water. Fire Safety J 5:123–124CrossRefGoogle Scholar
  26. 26.
    Pirkle JC, Schiesser WE (1987) DSS/2: a transportable Fortran 77 Code for systems of ordinary and one, two and three-dimensional partial differential equations. In: Proceedings of 1987 summer computer simulation conference, MontrealGoogle Scholar
  27. 27.
    Twardus EM, Brzustowsky TA (1981) The burning of crude oil spilled on water. Arch Combust 1(1/2):49–60Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bulent Kozanoglu
    • 1
    • 3
    Email author
  • Fabio Ferrero
    • 2
  • Miguel Muñoz
    • 2
  • Josep Arnaldos
    • 2
  • Joaquim Casal
    • 2
  1. 1.Universidad de las AméricasPueblaMexico
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Mechanical Engineering DepartmentCholula, PueblaMexico

Personalised recommendations