Skip to main content
Log in

Influence of longitudinal conduction in the matrix on effectiveness of rotary heat regenerator used in air-conditioning

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The paper presents an efficient analytical method of solving the problem of a rotary heat regenerator taking into account longitudinal heat conduction in the matrix. The small parameter method, Laplace transform as well as one of the spline functions have been applied for approximation of an initial condition in the reversion time. In the application part, the solution for a model in analysis of an influence of longitudinal conduction in the matrix on effectiveness of rotary heat regenerator in a wide range of dimensionless parameters as well as for the particular matrix applied in air-conditioning was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The description of a single convolution of a function is given in the appendix—Eq. 83,

  2. The description of a double convolution of a function is given in the appendix—Eq. 84.

Abbreviations

A :

heat exchange area (m2)

A nk :

the elements of the matrix

Bes n :

special functions

Bs n :

special functions

c :

specific heat (J/kg K)

C :

dimensionless number defining capacity of the heat regenerator

c p :

specific heat at constant pressure (J/kg K)

D j :

special functions

E j :

generalized dimensionless numbers of the heat regenerator

H :

dimensionless number

H (η):

heaviside function

i :

natural number

K s :

dimensionless parameter taking into account longitudinal heat conduction in the matrix

k L :

dimensionless parameter taking into account longitudinal conduction in the matrix, k LK s

L :

length of the regenerator (m)

\({\dot{m}_{\rm f}}\) :

fluid mass stream

M n :

elements of the column matrix

N :

natural number

n :

natural number

p :

pressure (Pa)

p :

co-ordinate in the area of the complex variable

Q :

energy (J)

R jn :

special functions

R j :

special functions series

S :

specific surface of matrix heat exchange (m2/m3)

T :

dimensionless temperature

t :

temperature (°C)

w :

velocity of the air inlet in front of the matrix, w = εw f (m/s)

w f :

velocity of the air in the matrix ducts (m/s)

x :

geometric co-ordinate (m)

α:

coefficient of heat transfer inside the matrix (W/m2 K)

α0 :

coefficient of heat transfer at the boundary surface (W/m2 K)

δ(η):

Dirac δ distribution

ε:

matrix porosity

ε:

elementary interval of polygon function

ρ:

density (kg/m3)

η:

dimensionless time

Λ:

dimensionless length of regenerator

λ:

thermal conductivity coefficient (W/m K)

ξ:

dimensionless geometric co-ordinate in the direction of fluid flow

Π:

dimensionless parameter

τ:

time (s)

τ0 :

characteristic time (s)

Φt :

effectiveness of the thermal energy recovery

σΦt :

relative drop of the thermal energy recovery effectiveness as a consequence of the longitudinal conductivity in the matrix

ω:

angular speed of rotor of regenerator (1/s)

c:

total volume of fluid and matrix

i:

inlet

f:

fluid

s:

matrix, matrix surface

References

  1. Bahnke GD, Howard CP (1964) The effect of longitudinal heat conduction in periodic-flow heat regenerator performance. Trans ASME Ser A 86:105

    Google Scholar 

  2. Büyükalca O, Yilmaz T (2002) Influence of rotational speed on efficiency of rotary-type heat regenerator. Heat Mass Transfer 38:441–447

    Article  Google Scholar 

  3. Dreher E (1978) Theorie und Praxis rotierender Wärmeruckgewinner. Ki Klima + Kälte – Ingenieur, Nr 2

  4. Das SK, Sahoo RK (1999) Second law analysis of a cyclic regenerator in presence of longitudinal heat conduction in matrix. Heat Mass Transfer 34:395–403

    Article  Google Scholar 

  5. Fedotkin JM, Ajzen AM (1975) Asimptoticzeskije metody w zadaczach tepomassopierenosa, Kijow

  6. Hausen H (1976) Wärmeüberttragung im Gegenstrom, Gleichstrom und Kreuzstrom. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Heggs PJ, Burns D (1988) Diabatic axial conduction effects in contra flow regenerators. In: 2nd UK National Conference on Heat Transfer, Mechanical Engineering Pub., vol II, London

  8. Kays WM, London AL (1958) Compact heat regenerators. Mc Graw-Hill Book Company, New York

    Google Scholar 

  9. Kułakowski B (1979) Computer methods of simulation and optimization of rotary heat regenerators (in Polish). Electrician Research Work, Issue 57, Warsaw Technical University

  10. Łach J (1985) Application of the successive approximations methods and of certain special functions in the analysis of an ideal regenerator start-up. Arch Thermodyn 6:1–2

    Google Scholar 

  11. Łach J, Pieczka W (1984) On the properties of some special functions related to Bessel’s functions and their application in heat regenerator theory. Int. J Heat Mass Transfer 27(12):2225–2238

    Article  Google Scholar 

  12. Nair S, Verma S, Dhingra SC (1998) Rotary heat regenerator perfomance with axial heat dispersion. Int J Heat Mass Transfer 41:2857–2864

    Article  MATH  Google Scholar 

  13. Porowski M (2005) An analytical model of a matrix heat exchanger with longitudinal heat conduction in the matrix in application for the exchanger dynamics research. Heat Mass Transfer 42:12–29

    Article  Google Scholar 

  14. Porowski M, Szczechowiak E (1992) Linear theory of the rotary energy regenerator. Arch Thermodyn 13:1–4

    Google Scholar 

  15. Schmidt FW, Willmott AJ (1981) Thermal energy storage and regeneration. Hemisphere Publisking Corporation, Washington

    Google Scholar 

  16. Skiepko T (1987) The solution of heat transport equations for a rotary regenerator. Arch Thermodyn 8:1–2

    Google Scholar 

  17. Skiepko T (1988) The effect of matrix longitudinal heat conduction on the temperature fields in the rotary heat regenerator. Int J Heat Mass Transfer 31:11

    Article  Google Scholar 

  18. Sherony DF, Solbrig CW (1970) Analytical investigation of heat or mass transfer and friction factors in a corrugated duct heat or mass regenerators. Int J Heat Mass Transfer 13:145–159

    Article  MATH  Google Scholar 

  19. Szczechowiak E (1979) The problems of accumulation of energy and moisture in rotary heat regenerator applied in air-conditioning (in Polish). Doctor’s Thesis. Poznan University of Technology

  20. Szczechowiak E (1986) An unsteady exchange of heat and adsorptive in matrix heat regenerators used in air conditioning systems (in Polish). Habilitation Thesis. Dissertation Series No. 177, Poznan University of Technology

  21. Szczechowiak E (1985) An analytical calculation of physical properties of moisture air (in Polish). Chodnictwo 20:8

    Google Scholar 

  22. Vortmeyer D, Le Mong S (1976) Anwenung des Äquivalenzprinzipes zwischen Ein-und Zweiphasenmodellen auf die Lösung der Regeneratorgleichungen. Wärme-und Stoffübertraung Nr 9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieczysław Porowski.

Appendix

Appendix

  1. 1.

    Dirac δ distribution

    $$\delta {\left( \xi \right)} = \left\{ {\begin{array}{*{20}c} {{0\quad \rm for\quad \xi \ne 0}} \\ {{\infty \quad \rm for\quad \xi = 0}} \\ \end{array} } \right.\quad \hbox{and}\quad {\int\limits_{- \infty}^{+ \infty} {\delta (\xi){\rm d}\xi = 1}}$$
    (81)
  2. 2.

    Heaviside function

    $$H{\left( \eta \right)} = \left\{ {\begin{array}{*{20}c} {{0\quad \rm for\quad \eta < 0}} \\ {{1\quad \rm for\quad \eta \geq 0}} \\ \end{array} } \right.$$
    (82)
  3. 3.

    Convolutions of functions

    • Single convolution of the function:

      $$f(\eta)*g(\eta) = {\int\limits_0^\eta {f(\eta ^{'})g(\eta - \eta ^{'}){\rm d}\eta ^{'}}}$$
      (83)
    • Double convolution of the function:

      $$f(\xi, \eta){\mathop *\limits_\xi}{\mathop *\limits_\eta}g(\xi, \eta) = \int\limits_0^\xi \int\limits_0^\eta f(\xi ^{'}, \eta ^{'})g[(\xi - \xi ^{'}),(\eta - \eta ^{'})]{\rm d}\xi ^{'} {\rm d}\eta ^{'}$$
      (84)
  4. 4.

    Special functions Bes n (ξ, η) and Bs n (ξ, η)

    • The functions defined by ach and Pieczka [10, 11] have form of series:

      $$\hbox{Bs}_{n} (\Lambda \xi, \Pi \eta) = {\sum\limits_{m = \max (0,n)}^\infty {\frac{{(\Lambda \xi)^{m} }}{{m!}}{\sum\limits_{k = 0}^{m - n} {\frac{{(\Pi \eta )^{k}}}{{k!}}}}}}$$
      (85)
      $$\hbox{Bes}_{n} (\Lambda \xi, \Pi \eta) = {\sum\limits_{m = \max (- n,0)}^\infty {\frac{{(\Lambda \xi)^{{m + n}} (\Pi \eta)^{m}}}{{(m + n)!m!}}}}$$
      (86)
  5. 5.

    Special functions \(D_{j}(\Lambda \xi, \Pi \eta)\)

    $$D_{0} (\Lambda \xi, \Pi \eta) = \delta (\xi)\exp (- \Pi \eta) + \Lambda \exp (- \Lambda \xi - \Pi \eta)\hbox{Bes}_{{- 1}} (\Lambda \xi, \Pi \eta)$$
    (87)
    $$D_{1} (\Lambda \xi, \Pi \eta) = \exp (- \Lambda \xi - \Pi \eta)\hbox{Bes}_{0} (\Lambda \xi, \Pi \eta)$$
    (88)
    $$D_{2} (\Lambda \xi, \Pi \eta) = \frac{1}{\Lambda }\exp (- \Lambda \xi - \Pi \eta)\hbox{Bes}_{1} (\Lambda \xi, \Pi \eta)$$
    (89)
  6. 6.

    Special functions R jn

    $$R_{{00}} (\Lambda \xi, \Pi \eta) = \exp (- \Lambda \xi - \Pi \eta)\hbox{Bs}_{0} (\Lambda \xi, \Pi \eta)$$
    (90)
    $$R_{{10}} (\Lambda \xi, \Pi \eta) = \frac{1}{\Lambda }\exp (- \Lambda \xi - \Pi \eta)[\Lambda \xi \hbox{Bs}_{0} (\Lambda \xi, \Pi \eta) - \Pi \eta \hbox{Bs}_{2} (\Lambda \xi, \Pi \eta)]$$
    (91)
    $$R_{{20}} (\Lambda \xi, \Pi \eta) = \frac{1}{\Lambda }\exp (- \Lambda \xi - \Pi \eta){\rm Bs}_{1} (\Lambda \xi, \Pi \eta)$$
    (92)
    $$R_{{30}} (\Lambda \xi, \Pi \eta) = \frac{1}{{\Lambda ^{2}}}\exp (- \Lambda \xi - \Pi \eta){\sum\limits_{i = 1}^\infty {\hbox{Bs}_{{i + 1}} (\Lambda \xi, \Pi \eta}})$$
    (93)
    $$R_{{01}} (\Lambda \xi, \Pi \eta) = \exp (- \Lambda \xi - \Pi \eta)\left[ - \hbox{Bes}_{{- 2}} (\Lambda \xi, \Pi \eta) + (1 - \Lambda \xi)\hbox{Bes}_{{- 3}} (\Lambda \xi, \Pi \eta) + \Lambda \xi \hbox{Bes}_{{- 4}} (\Lambda \xi, \Pi \eta)\right]$$
    (94)
    $$R_{{11}} (\Lambda \xi, \Pi \eta) = \frac{1}{\Lambda }\exp (- \Lambda \xi - \Pi \eta)\left[\hbox{Bes}_{{- 2}} (\Lambda \xi, \Pi \eta) + \Lambda \xi \hbox{Bes}_{{- 3}} (\Lambda \xi, \Pi \eta)\right]$$
    (95)
    $$R_{{21}} (\Lambda \xi, \Pi \eta) = \Lambda \xi \exp (- \Lambda \xi - \Pi \eta)\left[\hbox{Bes}_{{- 3}} (\Lambda \xi, \Pi \eta) - \hbox{Bes}_{{- 2}} (\Lambda \xi, \Pi \eta)\right]$$
    (96)
    $$R_{{31}} (\Lambda \xi, \Pi \eta) = \xi \exp (- \Lambda \xi - \Pi \eta)\hbox{Bes}_{{- 2}} (\Lambda \xi, \Pi \eta)]$$
    (97)
    $$\begin{aligned} R_{{02}} (\Lambda \xi, \Pi \eta) &= \exp (- \Lambda \xi - \Pi \eta)\left\{\vphantom{\frac{1}{2}}- \hbox{Bes}_{{- 3}} (\Lambda \xi, \Pi \eta) - (2\Lambda \xi - 5)\hbox{Bes}_{{- 4}} (\Lambda \xi,\Pi \eta) \right.\\ &\quad- \left[\frac{1}{2}(\Lambda \xi)^{2} - 8\Lambda \xi + 7\right]\hbox{Bes}_{{- 5}} (\Lambda \xi, \Pi \eta)\\ &\quad-\left[\frac{3}{2}(\Lambda \xi)^{2} - 10\Lambda \xi + 3\right]\hbox{Bes}_{{- 6}} (\Lambda \xi, \Pi \eta) - \Lambda \xi (\frac{3}{2}\Lambda \xi - 4)\hbox{Bes}_{{- 7}} (\Lambda \xi, \Pi \eta) \\ &\left.\quad+ \frac{1}{2}(\Lambda \xi)^{2} \hbox{Bes}_{{- 8}}(\Lambda \xi, \Pi \eta)\right\} \end{aligned}$$
    (98)
    $$\begin{aligned} R_{{12}} (\Lambda \xi, \Pi \eta) &= \frac{1}{\Lambda }\exp (- \Lambda \xi - \Pi \eta)\left\{\vphantom{\frac{1}{2}}\hbox{Bes}_{{- 3}} (\Lambda \xi, \Pi \eta) + 2(\Lambda \xi - 2)\hbox{Bes}_{{- 4}} (\Lambda \xi, \Pi \eta)\right.\\ &\quad + \left[\frac{1}{2}(\Lambda \xi)^{2} - 6\Lambda \xi + 3\right]\hbox{Bes}_{{- 5}} (\Lambda \xi, \Pi \eta) - \Lambda \xi (\Lambda \xi - 4)\hbox{Bes}_{{- 6}} (\Lambda \xi, \Pi \eta) \\ &\left.\quad+ \frac{1}{2}(\Lambda \xi)^{2} \hbox{Bes}_{{- 7}} (\Lambda \xi, \Pi \eta)\right\} \end{aligned}$$
    (99)
    $$\begin{aligned} R_{{22}} (\Lambda \xi, \Pi \eta) &= \exp (- \Lambda \xi - \Pi \eta)\left\{- \Lambda \xi \hbox{Bes}_{{- 3}} (\Lambda \xi, \Pi \eta) - \Lambda \xi \left(\frac{1}{2} \Lambda \xi - 5\right)\hbox{Bes}_{{- 4}} (\Lambda \xi,\Pi \eta) \right.\\ &\quad+ \Lambda \xi \left(\frac{3}{2}\Lambda \xi - 7\right)\hbox{Bes}_{{- 5}} (\Lambda \xi, \Pi \eta) - \Lambda \xi \left(\frac{3}{2}\Lambda \xi - 3\right)\hbox{Bes}_{{- 6}} (\Lambda \xi, \Pi \eta) \\ & \left.\quad + \frac{1}{2}(\Lambda \xi)^{2} \hbox{Bes}_{{- 7}} (\Lambda \xi, \Pi \eta)\right\} \end{aligned}$$
    (100)
    $$\begin{aligned} R_{{32}} (\Lambda \xi, \Pi \eta) &= \frac{1}{\Lambda }\exp (- \Lambda \xi - \Pi \eta)\left\{\vphantom{\frac{1}{2}}\Lambda \xi \hbox{Bes}_{{- 3}} (\Lambda \xi, \Pi \eta) + \Lambda \xi \left(\frac{1}{2}\Lambda \xi - 4\right)\hbox{Bes}_{{- 4}} (\Lambda \xi, \Pi \eta)\right.\\ &\quad\left.- \Lambda \xi (\Lambda \xi - 3)\hbox{Bes}_{{- 5}} (\Lambda \xi, \Pi \eta) + \frac{1}{2}(\Lambda \xi)^{2} \hbox{Bes}_{{- 6}} (\Lambda \xi, \Pi \eta)\right\} \end{aligned}$$
    (101)
    $$\begin{aligned} R_{{03}} (\Lambda \xi, \Pi \eta) &= \exp (- \Lambda \xi - \Pi \eta)\left\{\vphantom{\frac{1}{2}}- \hbox{Bes}_{{- 4}} (\Lambda \xi, \Pi \eta) - (3\Lambda \xi - 11)\hbox{Bes}_{{- 5}} (\Lambda \xi, \Pi \eta)\right.\\ &\quad- \left[\frac{3}{2}(\Lambda \xi)^{2} - 25\Lambda \xi + 39\right]\hbox{Bes}_{{- 6}} (\Lambda \xi, \Pi \eta)\\ &\quad - \left[\frac{1}{6}(\Lambda \xi)^{3} - 9\frac{1}{2}(\Lambda \xi)^{2} + 75\Lambda \xi - 61\right]\hbox{Bes}_{{- 7}} (\Lambda \xi, \Pi \eta) \\ &\quad +\left[\frac{5}{6}(\Lambda \xi)^{3} - 23(\Lambda \xi)^{2} + 105\Lambda \xi - 44\right]\hbox{Bes}_{{- 8}} (\Lambda \xi, \Pi\eta) \\ &\quad- \left[\frac{5}{3}(\Lambda \xi)^{3} - 27(\Lambda \xi)^{2} + 70\Lambda \xi - 12\right]\hbox{Bes}_{{- 9}} (\Lambda \xi, \Pi \eta) \\ &\quad + \Lambda \xi \left[\frac{5}{3}(\Lambda \xi )^{2} - 15\frac{1}{2}\Lambda \xi + 18\right]\hbox{Bes}_{{- 10}} (\Lambda \xi, \Pi \eta) \\ &\left.\quad- (\Lambda \xi)^{2} \left[\frac{5}{6}\Lambda \xi - 3\frac{1}{2}\right]\hbox{Bes}_{{- 11}} (\Lambda \xi, \Pi \eta) + \frac{1}{6}(\Lambda \xi)^{3} \hbox{Bes}_{{- 12}} (\Lambda \xi, \Pi \eta)\right\} \end{aligned}$$
    (102)
    $$\begin{aligned} R_{{13}} (\Lambda \xi, \Pi \eta) &= \frac{1}{\Lambda }\exp (- \Lambda \xi - \Pi \eta)\left\{\vphantom{\frac{1}{2}}- \hbox{Bes}_{{- 4}} (\Lambda \xi, \Pi \eta) + (3\Lambda \xi - 10)\hbox{Bes}_{{- 5}} (\Lambda \xi, \Pi \eta)\right. \\ &\quad+ \left[\frac{3}{2}(\Lambda \xi)^{2} - 22\Lambda \xi + 29\right]\hbox{Bes}_{{- 6}} (\Lambda \xi, \Pi \eta) \\ &\quad+ \left[\frac{1}{6}(\Lambda \xi)^{3} - 8(\Lambda \xi)^{2} + 53\Lambda \xi - 32\right]\hbox{Bes}_{{- 7}} (\Lambda \xi, \Pi \eta) \\ &\quad - \left[\frac{2}{3}(\Lambda \xi)^{3} - 15(\Lambda \xi)^{2} + 52\Lambda \xi - 12\right]\hbox{Bes}_{{- 8}} (\Lambda \xi, \Pi \eta)\\ &\quad+ \Lambda \xi\left[(\Lambda \xi)^{2} - 12\Lambda \xi + 18\right] \hbox{Bes}_{{- 9}} (\Lambda \xi, \Pi \eta) \\ &\left.\quad - (\Lambda \xi)^{2} \left[\frac{2}{3}\Lambda \xi - 3\frac{1}{2}\right]\hbox{Bes}_{{- 10}} (\Lambda \xi, \Pi \eta) + \frac{1}{6}(\Lambda \xi)^{3} \hbox{Bes}_{{- 11}} (\Lambda \xi, \Pi \eta)\right\} \end{aligned}$$
    (103)
    $$\begin{aligned} R_{{23}} (\Lambda \xi, \Pi \eta) &= \exp (- \Lambda \xi - \Pi \eta)\left\{\vphantom{\frac{1}{2}}- \Lambda \xi \hbox{Bes}_{{- 4}} (\Lambda \xi, \Pi \eta) - \Lambda \xi (\Lambda \xi - 11)\hbox{Bes}_{{- 5}} (\Lambda \xi, \Pi \eta)\right. \\ &\quad- \Lambda \xi \left[\frac{1}{6}(\Lambda \xi)^{2} - 7\Lambda \xi + 39\right]\hbox{Bes}_{{- 6}} (\Lambda \xi, \Pi \eta) \\ &\quad+ \Lambda \xi \left[\frac{5}{6}(\Lambda \xi)^{2} - 18\Lambda \xi + 61\right]\hbox{Bes}_{{- 7}} (\Lambda \xi, \Pi \eta) \\ &\quad- \Lambda \xi \left[\frac{5}{3}(\Lambda \xi)^{2} - 21\Lambda \xi + 44\right]\hbox{Bes}_{{- 8}} (\Lambda \xi, \Pi \eta) \\ &\quad+ \Lambda \xi \left[\frac{5}{3}(\Lambda \xi)^{2} - 13\Lambda \xi + 12\right]\hbox{Bes}_{{- 9}} (\Lambda \xi, \Pi \eta) \\ &\left.\quad - (\Lambda \xi)^{2} \left[\frac{5}{3}\Lambda \xi - 3\right]\hbox{Bes}_{{- 10}} (\Lambda \xi, \Pi \eta) + \frac{1}{6}(\Lambda \xi)^{3} \hbox{Bes}_{{- 11}} (\Lambda \xi, \Pi \eta)\right\} \end{aligned}$$
    (104)
    $$\begin{aligned} R_{{33}} (\Lambda \xi, \Pi \eta) &= \exp (- \Lambda \xi - \Pi \eta)\left\{\vphantom{\frac{1}{2}}\Lambda \xi \hbox{Bes}_{{- 4}}(\Lambda \xi, \Pi \eta) \right.\\ &\quad+ \Lambda \xi (\Lambda \xi - 10)\hbox{Bes}_{{- 5}} (\Lambda \xi, \Pi \eta) + \Lambda \xi \left[\frac{1}{6}(\Lambda \xi)^{2} - 6\Lambda \xi + 29\right]\hbox{Bes}_{{- 6}} (\Lambda \xi, \Pi \eta) \\ &\quad- \Lambda \xi \left[\frac{2}{3}(\Lambda \xi)^{2} - 12\Lambda \xi + 32\right]\hbox{Bes}_{{- 7}} (\Lambda \xi, \Pi \eta) \\ &\quad+ \Lambda \xi \left[(\Lambda \xi)^{2} - 10\Lambda \xi + 12\right]\hbox{Bes}_{{- 8}} (\Lambda \xi, \Pi \eta) \\ &\left.\quad- (\Lambda \xi)^{2} \left(\frac{2}{3}\Lambda \xi - 3\right)\hbox{Bes}_{{- 9}} (\Lambda \xi, \Pi \eta) + \frac{1}{6}(\Lambda \xi)^{3} \hbox{Bes}_{{- 10}} (\Lambda \xi, \Pi \eta)\right\} \end{aligned}$$
    (105)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porowski, M., Szczechowiak, E. Influence of longitudinal conduction in the matrix on effectiveness of rotary heat regenerator used in air-conditioning. Heat Mass Transfer 43, 1185–1200 (2007). https://doi.org/10.1007/s00231-006-0205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0205-8

Keywords

Navigation