Advertisement

Heat and Mass Transfer

, Volume 42, Issue 6, pp 478–491 | Cite as

Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics

  • Sreekant V. J. Narumanchi
  • Jayathi Y. Murthy
  • Cristina H. AmonEmail author
Special Issue

Abstract

Fourier diffusion has been found to be inadequate for the prediction of heat conduction in modern microelectronics, where extreme miniaturization has led to feature sizes in the sub-micron range. Over the past decade, the phonon Boltzmann transport equation (BTE) in the relaxation time approximation has been employed to make thermal predictions in dielectrics and semiconductors at micro-scales and nano-scales. This paper presents a review of the BTE-based solution methods widely employed in the literature and recently developed by the authors. First, the solution approaches based on the gray formulation of the BTE are presented. The semi-gray approach, moments of the Boltzmann equation, the lattice Boltzmann approach, and the ballistic-diffusive approximation are also discussed. Models which incorporate greater details of phonon dispersion are also presented. Hotspot self-heating in sub-micron SOI transistors and transient electrostatic discharge in NMOS transistors are also examined. Results, which illustrate the differences between some of these models reveal the importance of developing models that incorporate substantial details of phonon physics. The impact of boundary conditions on thermal predictions is also investigated.

Keywords

Micro/nanoscale Sub-continuum thermal transport BTE Hotspot NMOS transistors SOI 

Nomenclature

C

Total volumetric heat capacity (J/m3 K)

Cw

Volumetric specific heat per unit frequency (Js/m3 K)

D(w)

Phonon density of states (m−3)

etotal

Total energy (J/m3)

fw

Phonon distribution function

\(\hbar \)

Reduced Planck’s constant (= h/(2π), 1.054 × 10−34 Js)

kB

Boltzmann’s constant (1.38 × 10−23 J/K)

K

Thermal conductivity (W/m K)

NLA, NTA

Number of frequency bands in LA and TA branches

Nbands

Total number of frequency bands (N LA + N TA + 1)

Nθ, Nϕ

Number of θ and ϕ divisions in an octant

qvol

Volumetric heat generation (W/m3)

\(\vec r\)

Position vector (m)

\(\hat s\)

Unit direction vector

t

Time (s)

T

Temperature (K)

v

Phonon velocity (m/s)

w

Phonon frequency (rad/s)

Greek symbols

Δw

Frequency width (rad/s)

ϕ

Azimuthal angle

γ

Band-averaged inverse relaxation time for interaction (s−1)

τ

Relaxation time of a phonon (s)

θ

Polar angle (degrees)

Subscripts

i

ith frequency band

ij

Property specific to bands i and j

L

Lattice

O

Optical mode

P

Propagating mode

R

Reservoir mode

w

Phonon frequency

Superscripts

0

Equilibrium condition

Notes

Acknowledgements

The support of NSF grants CTS-0103082 and CTS-0219008, and the PITA program of the Pennsylvania Department of Community and Economic Development, is gratefully acknowledged.

References

  1. 1.
    Amon CH, Narumanchi SVJ, Madrid M, Gomes C, Goicochea J (2005a) Hierarchical modeling of thermal transport from nano-to-macroscales. In: Kakac S, Vasiliev LL, Bayazitoglu Y, Yener Y (eds) Microscale heat transfer—fundamental and applications. Kluwer Academic Publishers, The Netherlands, pp379–400CrossRefGoogle Scholar
  2. 2.
    Amon CH, Ghai SS, Kim WT, Jhon MS (2005b) Modeling of nanoscale transport phenomena: application to information technology. Phys A (in press)Google Scholar
  3. 3.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishers, PhiladelphiaGoogle Scholar
  4. 4.
    Asheghi M (2002) Nanoscale energy transport in information technology research with an application to high-density data storage devices and systems. ASME international mechanical engineering congress and exposition, Paper No. IMECE2002-32110, New Orleans, LOGoogle Scholar
  5. 5.
    Asheghi M, Touzelbaev MN, Goodson KE, Leung YK, Wong SS (1998) Temperature-dependent thermal conductivity of single-crystal silicon layers in soil substrates. J Heat Transfer 120:30–36CrossRefGoogle Scholar
  6. 6.
    Asheghi M, Kurabayashi K, Kasnavi R, Goodson KE (2002) Thermal conduction in doped single-crystal silicon films. J Appl Phys 91(8):5079–5088CrossRefGoogle Scholar
  7. 7.
    Balandin A, Wang KL (1998) significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys Rev B 58(3):1544–1549CrossRefGoogle Scholar
  8. 8.
    Brockhouse BN (1959) Lattice vibrations in silicon and germanium. Phys Rev Lett 2(6):256–259CrossRefGoogle Scholar
  9. 9.
    Cahill DG, Goodson KE, Majumdar A (2002) Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. ASME J Heat Transfer 124:223–241CrossRefGoogle Scholar
  10. 10.
    Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793–818CrossRefGoogle Scholar
  11. 11.
    Chai JC, Lee HS, Patankar SV (1994) Finite volume method for radiation heat transfer. J Thermophys Heat Transfer 8(3):419–425Google Scholar
  12. 12.
    Chen G (1997) Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J Heat Transfer 119:220–229CrossRefGoogle Scholar
  13. 13.
    Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57(23):14958–14973CrossRefGoogle Scholar
  14. 14.
    Chen G (1999) Phonon wave heat conduction in thin films and superlattices. J Heat Transfer 121:945–953CrossRefGoogle Scholar
  15. 15.
    Chen G (2001) Ballistic-diffusive heat conduction equations. Phys Rev Lett 86(11):2297–2300CrossRefGoogle Scholar
  16. 16.
    Chen G (2002) Ballistic-diffusive equations for transient heat conduction from nano to macroscales. ASME J Heat Transfer 124:320–328CrossRefGoogle Scholar
  17. 17.
    Darwish MS, Moukalled FH (1994) Normalized variable and space formulation methodology for high-resolution schemes. Numer Heat Transfer Part B 26:79–96CrossRefGoogle Scholar
  18. 18.
    Duncan A, Ravaioli U, Jakumeit J (1998) Full-band Monte Carlo investigation of carrier trends in the scaling of metal-oxide semiconductor field-effect transistors. IEEE Trans Electron Devices 45:867–876CrossRefGoogle Scholar
  19. 19.
    Escobar R, Ghai SS, Jhon MS, Amon CH (2003) Time-dependent simulations of sub-continuum heat generation effects in electronic devices using the lattice boltzmann method. International Mechanical Engineering Congress and Exposition. IMECE 2003-41522Google Scholar
  20. 20.
    Escobar R, Ghai SS, Jhon MS, Amon CH (2005) Multi-length and time scale thermal transport using the lattice boltzmann method with application to electronics cooling. Int J Heat Mass Transfer (in press)Google Scholar
  21. 21.
    Ferry DK (2000) Semiconductor transport. Taylor & Francis, NYGoogle Scholar
  22. 22.
    Flik MI, Choi BI, Goodson KE (1992) Heat transfer regimes in microstructures. ASME J Heat Transfer 114:666–674Google Scholar
  23. 23.
    Fushinobu K, Hijikata K, Majumdar A (1995a) Heat generation in sub-micron GaAs MESFETs. In: Proceedings—international intersociety electronic packaging conference EEP. Adv Electron Packaging 10(2):897–902Google Scholar
  24. 24.
    Fushinobu K, Majumdar A, Hijikata K (1995b) Heat generation and transport in submicron semiconductor devices. ASME J Heat Transfer 117:25–31CrossRefGoogle Scholar
  25. 25.
    Gaskell PH, Lau AKC (1988) Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm. Int J Numer Methods Fluids 8:617–641zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ghai SS, Escobar R, Jhon MS, Amon CH (2003) Sub-continuum heat conduction in electronics using the Lattice-Boltzmann method. The Pacific rim/ASME international electronic packaging technical conference and exhibition. ASME Inter PACK 2003-35258Google Scholar
  27. 27.
    Ghai SS, Kim WT, Escobar RA, Amon CH, Jhon MS (2005a) A novel heat transfer model and its application to information storage systems. J Appl Phys 97: 10P703CrossRefGoogle Scholar
  28. 28.
    Ghai SS, Amon CH, Kim WT, Jhon MS (2005b) Transient thermal responses of a nanoscale hotspot in a film with alternating materials. INTERMAG 2005, Nagoya, JapanGoogle Scholar
  29. 29.
    Goodson KE (1996) Thermal conduction in nonhomogeneous CVD diamond layers in electronic microstructures. ASME J Heat Transfer 118:279–286CrossRefGoogle Scholar
  30. 30.
    Goodson KE, Ju YS, Asheghi M (1998) Thermal phenomena in semiconductor devices and interconnects. In: Tien CL, Majumdar A, Gerner FM (eds) Microscale energy transport. Taylor & Francis, NYGoogle Scholar
  31. 31.
    Han Y-J, Klemens PG (1993) Anharmonic thermal resistivity of dielectric crystals at low temperatures. Phys Rev B 48:6033–6042CrossRefGoogle Scholar
  32. 32.
    Holland MG (1963) Analysis of Lattice thermal conductivity. Phys Rev 132(6):2461–2471CrossRefMathSciNetGoogle Scholar
  33. 33.
    Joshi AA, Majumdar A (1993) Transient ballistic and diffusive phonon transport in thin films. J Appl Phys 74(1):31–39CrossRefGoogle Scholar
  34. 34.
    Ju YS (1999) Microscale heat conduction in integrated circuits and their constituent films. PhD Thesis, Department of Mechanical Engineering, Stanford University, StanfordGoogle Scholar
  35. 35.
    Ju YS, Goodson KE (1999) Phonon scattering in silicon thin films with thickness of order 100 nm. Appl Phys Lett 74(20):3305–3307CrossRefGoogle Scholar
  36. 36.
    Kittel C (1996) Introduction to solid state physics. Wiley, NYGoogle Scholar
  37. 37.
    Klemens PG (1958) Thermal conductivity and lattice vibrational modes. In: Seitz F, Thurnbull D (eds) Solid state physics, vol 7. Academic Press, New York, pp1–98Google Scholar
  38. 38.
    Klemens PG (1969) Theory of thermal conductivity of solids. In: Tye RP (ed) Thermal conductivity, vol 1. Academic Press, London, pp1–68Google Scholar
  39. 39.
    Lai J, Majumdar A (1996) Concurrent thermal and electrical modeling of sub-micrometer silicon devices. J Appl Phys 79(9):7353–7361CrossRefGoogle Scholar
  40. 40.
    Lundstrom M (2000) Fundamentals of carrier transport. Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    Majumdar A (1993) Microscale heat conduction in dielectric thin films. ASME J Heat Transfer 115:7–16Google Scholar
  42. 42.
    Majumdar A (1998) Microscale energy transport in solids. In: Tien C-L, Majumdar A, Gerner FM (eds) Microscale energy transport. Washington DC, Taylor & Francis, NY, pp1–94Google Scholar
  43. 43.
    Majumdar A, Fushinobu K, Hijikata K (1995) Effect of gate voltage on hot-electron and hot-phonon interaction and transport in a submicrometer transistor. J Appl Phys 77(12):6686–6694CrossRefGoogle Scholar
  44. 44.
    Mazumder S, Majumdar A (2001) Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. ASME J Heat Transfer 123:749–759CrossRefGoogle Scholar
  45. 45.
    Murthy JY, Mathur SR (1998) Finite volume method for radiative heat transfer using unstructured meshes. J Thermophys Heat Transfer 12(3):313–321CrossRefGoogle Scholar
  46. 46.
    Murthy JY, Mathur SR (2003) Ballistic-diffusive approximation for phonon transport accounting for polarization and dispersion. ASME summer heat transfer conference, paper No. HT2003-47491Google Scholar
  47. 47.
    Narumanchi SVJ, Murthy JY, Amon CH (2003a) Computations of sub-micron heat transport in silicon accounting for phonon dispersion. ASME summer heat transfer conference. HT2003-47490, Las Vegas, NVGoogle Scholar
  48. 48.
    Narumanchi SVJ, Murthy JY, Amon CH (2003b) Simulations of heat conduction in sub-micron silicon-on-insulator transistors accounting for phonon dispersion and polarization. ASME international mechanical engineering congress and exposition. IMECE 2003-42447, Washington, DCGoogle Scholar
  49. 49.
    Narumanchi SVJ, Murthy JY, Amon CH (2003c) Simulation of unsteady small heat source effects in sub-micron heat conduction. ASME J Heat Transfer 125(5):896–903CrossRefGoogle Scholar
  50. 50.
    Narumanchi SVJ, Murthy JY, Amon CH (2004a) Heat transport during transient electrostatic discharge events in a sub-micron transistor. In: Proceedings—ASME Heat transfer/fluids engineering summer conference, Charlotte, NC, paper No. HT-FED2004-56252Google Scholar
  51. 51.
    Narumanchi SVJ, Murthy JY, Amon CH (2005) Comparison of different phonon transport models for predicting heat conduction in silicon-on-insulator transistors. ASME J Heat Transfer 127:713–723CrossRefGoogle Scholar
  52. 52.
    Narumanchi SVJ, Murthy JY, Amon CH (2004) Sub-micron heat transport model in silicon accounting for phonon dispersion and polarization. ASME J Heat Transfer 126:946–955CrossRefGoogle Scholar
  53. 53.
    Patankar SV (1980) Numerical heat transfer and fluid flow. Taylor & Francis, NYzbMATHGoogle Scholar
  54. 54.
    Pop E, Sinha S, Goodson KE (2003) Detailed phonon generation simulations via the Monte–Carlo method. In: Proceedings—ASME summer heat transfer conference, paper No. HT2003-47312, Las Vegas, NVGoogle Scholar
  55. 55.
    Succi S (2001) The lattice-Boltzmann equation for fluid dynamics and beyond. Clarendon Press, Oxford, UKzbMATHGoogle Scholar
  56. 56.
    Sverdrup PG (2000) Simulation and thermometry of sub-continuum heat transport in semiconductor devices. PhD Thesis, Department of Mechanical Engineering, Stanford University, StanfordGoogle Scholar
  57. 57.
    Sverdrup PG, Ju YS, Goodson KE (2001) Sub-continuum simulations of heat conduction in silicon-on-insulator transistors. ASME J Heat Transfer 123:130–137CrossRefGoogle Scholar
  58. 58.
    Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–668CrossRefGoogle Scholar
  59. 59.
    Touloukian YS, Buyco EH (1970) Thermal conductivity: non-metallic solids thermophysical properties of matter. Plenum press, New York, IFIGoogle Scholar
  60. 60.
    Zhang W, Fisher TS (2002) Application of the lattice-Boltzmann method to sub-continuum heat conduction. International mechanical engineering congress and exposition, IMECE2002-32122Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Sreekant V. J. Narumanchi
    • 1
  • Jayathi Y. Murthy
    • 2
  • Cristina H. Amon
    • 3
    Email author
  1. 1.National Renewable Energy LaboratoryGoldenUSA
  2. 2.School of Mechanical EngineeringPurdue UniversityW. LafayetteUSA
  3. 3.Institute for Complex Engineered Systems and Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations