Heat and Mass Transfer

, Volume 41, Issue 1, pp 1–4

Heat transfer over an unsteady stretching surface

  • E. M. A. Elbashbeshy
  • M. A. A. Bazid


Similarity solution of the laminar boundary layer equations corresponding to an unsteady stretching surface have been studied. The governing time-dependent boundary layer are transformed to ordinary differential equations containg Prandtl number and unsteadiness parameter. The effect of various govern-ing parameters such as Prandtl number and unsteadiness param-eter which determine the velocity and temperature profiles and heat transfer coefficient are studied.


  1. 1.
    Sakiadis BC (1961) Boundary layer behavior on continuous solid surfaces :I. Boundary-layer equations for two- dimensional and axisymmetric flow. AIChE J 7(1): 26–28CrossRefGoogle Scholar
  2. 2.
    Sakiadis BC (1961) Boundary layer behavior on continuous solid surface : II. Boundary layer behavior on continuous flat surface. AIChE J 7(1): 221–225CrossRefGoogle Scholar
  3. 3.
    Tsou FK; Sparrow EM; Goldstein RJ (1967) Flow and heat transfer in the boundary layer on a continuous moving surface, Int J Heat Mass Transfer 10: 219– 235Google Scholar
  4. 4.
    Crane LJ (1970) Flow past a stretching plane. Z Amgew Math Phys 21: 645–647Google Scholar
  5. 5.
    Vleggaar J (1977) Laminar boundary layer behavior on continuous, accelerating surfaces. Chem Eng Sci 32: 1517–1525CrossRefGoogle Scholar
  6. 6.
    Gupta PS; Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Canadian J Chem Eng 55(6): 744–746Google Scholar
  7. 7.
    Soundalgekar VM; Ramana TV (1980) Heat transfer past a continuous moving plate with variable temperature Warme- Und Stoffuber tragung.14: 91–93Google Scholar
  8. 8.
    Grubka LJ; Bobba KM (1985) Heat transfer characteristics of a continuous stretching surface with variable temperature. J Heat Transfer 107: 248–250Google Scholar
  9. 9.
    Ali ME (1994) Heat transfer characteristics of a continuos stretching surface. Warme-Und Stoffubertragung 29: 227–234Google Scholar
  10. 10.
    Banks WHH (1983) Similarity solutions of the Boundary layer equation for a stretching wall. J Mec Theor Appl 2: 375–392Google Scholar
  11. 11.
    Ali ME (1995) On thermal Boundary layer on a power law stretched surface with suction or injection. Int J Heat Mass Flow 16: 280–290CrossRefGoogle Scholar
  12. 12.
    Elbashbeshy EMA (1998) Heat transfer over a stretching surface with variable heat flux. J Physics D: Appl Physics 31: 1951–1955Google Scholar
  13. 13.
    Elbashbeshy EMA; Bazid MAA (2000) Heat transfer over a continuously moving plate embedded in non-Darcian porous medium. Int J Heat and Mass Transfer 43: 3087–3092CrossRefGoogle Scholar
  14. 14.
    Andersson HT; Aarseth JB; Dandapat BS (2000) Heat transfer in a liquid film on an unsteady stretching surface. Int J Heat Transfer 43: 69–74CrossRefGoogle Scholar
  15. 15.
    Chow CY (1983) An introduction to computational fluid mechanics. Seminole, Boulder, CoGoogle Scholar
  16. 16.
    Grubka LT; Bobba KM (1985) Heat transfer Characteristics of a continuous stretching surface with variable temperature. ASME J Heat Transfer 107: 248–250Google Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • E. M. A. Elbashbeshy
    • 1
  • M. A. A. Bazid
    • 2
  1. 1.Department of MathematicsFaculty of Science, Ain Shams UniversityCairoEgypt
  2. 2.Department of MathematicsFaculty of Education, Suez Canal UniversityEl-ArishEgypt

Personalised recommendations