Advertisement

Products of real equivariant weight filtrations

  • Fabien PriziacEmail author
Article
  • 7 Downloads

Abstract

We first show the existence of a weight filtration on the equivariant cohomology of real algebraic varieties equipped with the action of a finite group, by applying group cohomology to the dual geometric filtration. We then prove the compatibility of the equivariant weight filtrations and spectral sequences with Künneth isomorphism, cup and cap products, from the filtered chain level. We finally induce the usual formulae for the equivariant cup and cap products from their analogs on the non-equivariant weight spectral sequences.

Mathematics Subject Classification

14P25 14P10 57S17 57S25 55U25 

Notes

References

  1. 1.
    Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, New York (1982)Google Scholar
  2. 2.
    Carlson, J.F., Townsley, L., Valero-Elizondo, L., Zhang, M.: Cohomology Rings of Finite Groups with an Appendix: Calculations of Cohomology Rings of Groups of Order Dividing 64 (Algebra and Applications). Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  3. 3.
    Deligne, P.: Poids dans la cohomologie des variétés algébriques. In: Proceedings of the International Congress of Mathematicians, Vancouver, pp. 79–85 (1974)Google Scholar
  4. 4.
    Fichou, G.: Equivariant virtual Betti numbers. Ann. de l’Inst. Fourier 58(1), 1–27 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Guillén, F., Navarro Aznar, V., Pascual, P., Puerta, F.: Hyperrésolutions cubiques et descente cohomologique. Lecture Notes in Mathematics, vol. 1335. Springer, Berlin (1988)CrossRefGoogle Scholar
  6. 6.
    Guillén, F., Navarro, V.: Un critère d’extension des foncteurs définis sur les schémas lisses. IHES Publ. Math. 95, 1–83 (2002)CrossRefGoogle Scholar
  7. 7.
    Kurdyka, K.: Ensembles semi-algébriques symétriques par arcs. Math. Ann. 281, 445–462 (1988)CrossRefGoogle Scholar
  8. 8.
    Kurdyka, K., Parusiński, A.: Arc-symmetric sets and arc-analytic mappings. In: Panoramas et Synthèses, vol. 24. Mathematical Society of France, pp. 33–67 (2007)Google Scholar
  9. 9.
    Limoges, T., Priziac, F.: Cohomology and products of real weight filtrations. Ann. de l’Inst. Fourier 65(5), 2235–2271 (2015).  https://doi.org/10.5802/aif.2987 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mac Lane, S.: Homology. Springer, Berlin (1963)CrossRefGoogle Scholar
  11. 11.
    McCleary, J.: A User’s Guide to Spectral Sequences, 2nd edn. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  12. 12.
    McCrory, C., Parusiński, A.: Virtual Betti numbers of real algebraic varieties. Comptes Rendus Math. Acad. Sci. Paris 336(9), 763–768 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    McCrory, C., Parusiński, A.: The Weight Filtration for Real Algebraic Varieties. Topology of Stratified Spaces. Mathematical Sciences Research Institute Publications, vol. 58, pp. 121–160. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  14. 14.
    Park, D.H., Suh, D.Y.: Semialgebraic \(G\) \(CW\) complex structure of semialgebraic \(G\) spaces. J. Korean Math. Soc. 35(2), 371–386 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Priziac, F.: Complexe de poids des variétés algébriques réelles avec action. Math. Z. 277(1), 63–80 (2014).  https://doi.org/10.1007/s00209-013-1244-8 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Priziac, F.: Equivariant weight filtration for real algebraic varieties with action. J. Math. Soc. Jpn. 68(4), 1789–1818 (2016).  https://doi.org/10.2969/jmsj/06841789 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Totaro, B.: Topology of singular algebraic varieties. In: Proceedings of the International Congress of Mathematicians, Beijing, pp. 533–541 (2002)Google Scholar
  18. 18.
    van Hamel, J.: Algebraic cycles and topology of real algebraic varieties, CWI Tract 129. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam (1997)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institut de Mathématiques de Marseille (UMR 7373 du CNRS)Aix-Marseille UniversitéMarseille Cedex 13France
  2. 2.CNRS, Centrale Marseille, I2MAix Marseille UnivMarseilleFrance

Personalised recommendations