Imaginary quadratic fields with class groups of 3-rank at least 2



In this short note, we construct a family of imaginary quadratic fields whose class group has 3-rank at least 2. We show that, for every large X, there are \(\gg X^{\frac{1}{2}-\epsilon }\) such fields with the discriminant \(-D\) satisfying \(D\le X\).

Mathematics Subject Classification

11R11 11R29 



We thank Professor Michael Filaseta for helpful discussions. We are grateful to the anonymous referee for carefully reviewing this paper, correcting several issues, and suggesting some changes that improved the presentation of this work. We also thank the referee for bringing the preprint [11] to our attention.


  1. 1.
    Byeon, D.: Imaginary quadratic fields with non-cyclic ideal class group. Ramanujan J. 11, 159–164 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Byeon, D., Koh, E.: Real quadratic fields with class number divisible by \(3\). Manuscr. Math. 111(2), 261–263 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chakraborty, K., Murty, R.: On the number of real quadratic fields with class number divisible by \(3\). Proc. AMS 131(1), 41–44 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cohen, H., Lenstra, H.W.: Heuristics on Class Groups of Number Fields. Lecture Notes in Mathematics, vol. 1068, pp. 33–62. Springer, Berlin (1984)CrossRefGoogle Scholar
  5. 5.
    Craig, A.: A type of class group for imaginary quadratic fields. Acta Arith. 22, 449–459 (1973)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Craig, A.: A construction for irregular discriminants. Osaka Math. J. 14(2), 365–402 (1977); Corrigendum. Osaka Math. J. 15(2), 461 (1978)Google Scholar
  7. 7.
    Heath-Brown, D.R.: Counting Rational Points on Algebraic Varieties, Analytic Number Theory. Lecture Notes in Math., vol. 1891, pp. 51–95. Springer, Berlin (2006)zbMATHGoogle Scholar
  8. 8.
    Heath-Brown, D.R.: Quadratic class numbers divisible by 3. Funct. Approx. Comment. Math. 37, 203–211 (2007); Corrigendum. Funct. Approx. Comment. Math. 43, 227 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hooley, C.: On the power-free values of polynomials in two variables. In: Analytic Number Theory, pp. 235–266, Cambridge Univ. Press, Cambridge (2009)Google Scholar
  10. 10.
    Kishi, Y., Miyake, K.: Parametrization of the quadratic fields whose class numbers are divisible by three. J. Number Theory 80, 209–217 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Levin, A., Yan, S., Wiljanen, L.: Quadratic fields with a class group of large \(3\)-rank (2019). arXiv preprint arXiv:1910.12276
  12. 12.
    Luca, F., Pacelli, A.: Class groups of quadratic fields of \(3\)-rank at least \(2\): effective bounds. J. Number Theory 128, 796–804 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Murty, R.: Exponents of class groups of quadratic fields. In: Topics in Number Theory. University Park, PA (1997), Math. Appl., vol. 467, pp. 229–239. Kluwer Academic, Dordrecht (1999)CrossRefGoogle Scholar
  14. 14.
    Nagell, T.: Über die Klassenzahl imaginar quadratischer Zahlkörper. Abh. Math. Semin. Univ. Hambg. 1, 140–150 (1922)CrossRefGoogle Scholar
  15. 15.
    Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61(2), 681–690 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Weinberger, P.J.: Real quadratic fields with class numbers divisible by \(n\). J. Number Theory 5, 237–241 (1973)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yamamoto, Y.: On unramified Galois extensions of quadratic number fields. Osaka J. Math 7, 57–76 (1970)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Yu, G.: A note on the divisibility of class numbers of real quadratic fields. J. Number Theory 97, 35–44 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesKent State UniversityKentUSA

Personalised recommendations