Advertisement

On the local factors of irreducible representations of quaternionic unitary groups

  • Hirotaka KakuhamaEmail author
Article
  • 8 Downloads

Abstract

In this paper, we give a precise definition of the analytic \(\gamma \)-factor of irreducible representations of quaternionic unitary groups, which extends a work of Lapid–Rallis.

Mathematics Subject Classification

11F70 

Notes

Acknowledgements

The author would like to thank my supervisor A. Ichino for many advices. The author also would like to thank the referee for sincere and useful comments.

References

  1. 1.
    Arthur, J.: The endoscopic classification of representations. Orthogonal and symplectic groups. Amer. Math. Soc. Colloquium Publications, 61. Amer. Math. Soc., Providence, RI (2013)Google Scholar
  2. 2.
    Branson, T., Ólafsson, G., Ørsted, B.: Spectral generating operators and intertwining operators for representations induced from a maximal parabolic subgroup. J. Funct. Anal. 135(1), 163–205 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Casselman, W.: The unramified principal series of \(p\)-adic groups. I. The spherical function. Compos. Math. 40(3), 387–406 (1980)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Casselman, W., Osborne, M.S.: The restriction of admissible representations to \(\mathfrak{n}\). Mathematische Annalen 233(3), 193–198 (1978)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gan, W.T.: Doubling zeta integrals and local factors for metaplectic groups. Nagoya Math. J. 208, 67–95 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gan, W.T., Ichino, A.: Formal degrees and local theta correspondence. Invent. Math. 195(3), 509–672 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gelbert, S., Piatetski-Shapiro, I., Rallis, S.: Explicit constructions of automorphic \(L\)-functions. vol. 1254 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (1987)Google Scholar
  8. 8.
    Godement, R., Jacquet, H.: Zeta Functions of Simple Algebra. Lecture Notes in Mathematics, vol. 260. Springer-Verlag, Berlin, New York (1972)CrossRefGoogle Scholar
  9. 9.
    Henniart, G.La: conjecture de Langlands locale pour \({\rm GL}(3)\). Mém. Soc. Math. France (N.S.) 11–12, 186 (1984)zbMATHGoogle Scholar
  10. 10.
    Igusa, J.: Some results on p-adic complex powers. Am. J. Math. 106, 1013–1032 (1984)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ikeda, T.: On the functional equation of the Siegel series. J. Number Theory 172, 44–62 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaletha, T., Minguez, A., Shin, S W., White, P.: Endoscopic Classification of Representations: Inner Forms of Unitary Groups. arXiv:1409.3731 [math.NT]
  13. 13.
    Karel, M.L.: Functional equations of Whittaker functions on \(p\)-adic groups. Am. J. Math. 101(6), 1303–1325 (1979)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Knapp, A.W.: Local Langlands correspondence: the Archimedean case. In: Motives (Seattle, WA, 1991), vol. 55 of Proc. Sympos. Pure Math., pp. 393–410. Amer. Math. Soc., Providence, RI (1994)Google Scholar
  15. 15.
    Kottwitz, R.: Sign changes in harmonic analysis on reductive groups. Trans. AMS 278, 289–297 (1983)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Koike, K., Terada, I.: Young-diagrammatic methods for the representation theory of the groups \(\operatorname{Sp}\) and \(\operatorname{SO}\). In: The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), vol. 47 of Proc. Sympos. Pure Math., pp. 437-447. Amer. Math. Soc., Providence, RI (1987)Google Scholar
  17. 17.
    Lapid, E.M., and Rallis, S.: On the local factors of representations of classical groups. In: Automorphic Representations, \(L\)-functions and Applications: Progress and Prospects, vol. 11 of Ohio State Univ. Math. Res. Inst. Publ., pp. 309-359. de Gruyter, Berlin (2005)Google Scholar
  18. 18.
    Mok, C.P.: Endoscopic classification of representations of quasi-split unitary groups. Mem. Amer. Math. Soc. 235 no. 1108 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Piatetski-Shapiro, I., Rallis, S.: \(\epsilon \) factor of representations of classical groups. Proc. Nat. Acad. Sci. USA 83(13), 4589–4593 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shimura, G.: Some exact formulas on quaternion unitary groups. J. Reine Angew. Math. 509, 67–102 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shin, S.W.: Automorphic Plancherel density theorem. Isr. J. Math 192(1), 83–120 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tate, J. T.: Local constants. Prepared in collaboration with C. J. Bushnell and M. J. Taylor. Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pp. 89–131. Academic Press, London (1977)Google Scholar
  23. 23.
    Wallach, N.R.: Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals. In: Representations of Lie groups, Kyoto, Hiroshima, 1986, vol. 14 of Adv. Stud. Pure Math., pp. 123–151. Academic Press, Boston, MA (1988)Google Scholar
  24. 24.
    Yamana, S.: Degenerate principal series representations for quaternionic unitary groups. Israel J. Math. 185, 77–124 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yamana, S.: The Siegel-Weil formula for unitary groups. Pacific. J. Math. 264(1), 235–256 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yamana, S.: \(L\)-functions and theta correspondence for classical groups. Invent. Math. 196(3), 651–732 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yamana, S.: Siegel series for skew Hermitian forms over quaternion algebras. Abh. Math. Semin. Univ. Hambg. 87(1), 43–59 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsKyoto UniversityKyotoJapan

Personalised recommendations