Relative homotopy abelian H-spaces

  • S. Theriault
  • J. Wu
Open Access


We introduce the notion of a relatively homotopy associative and homotopy commutative H-space, construct one for any path-connected space X, and describe several useful properties, including exponent properties.

Mathematics Subject Classification

Primary 55P45 Secondary 55P35 55Q52 


  1. 1.
    Cohen, F.R., Moore, J.C., Neisendorfer, J.A.: Torsion in homotopy groups. Ann. Math. 109, 121–168 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cohen, F.R., Moore, J.C., Neisendorfer, J.A.: Exponents in homotopy theory, algebraic topology and algebraic K-theory. In: Browder, W. (ed.) Annals of Mathematics Studies, pp. 3–34. Princeton University Press, Princeton (1987)Google Scholar
  3. 3.
    Cohen, F.R., Neisendorfer, J.A.: A construction of \(p\)-local \(H\)-spaces, pp. 351–359. Lecture Notes in Math. Vol. 1051, Springer, Berlin (1984)Google Scholar
  4. 4.
    Dold, A., Lashof, R.: Principal quasifibrations and fiber homotopy equivalence of bundles. Ill. J. Math. 3, 285–305 (1959)zbMATHGoogle Scholar
  5. 5.
    Ganea, T.: A generalization of the homology and homotopy suspension. Comment. Math. Helv. 39, 295–322 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gray, B.: Homotopy commutativity and the \(EHP\) sequence. Contemp. Math. 96, 181–188 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gray, B.: On decompositions in homotopy theory. Trans. Am. Math. Soc. 358, 3305–3328 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gray, B.: Universal abelian \(H\)-spaces. Topol. Appl. 159, 209–224 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gray, B.: Abelian properties of Anick spaces, Mem. Amer. Math. Soc. 246, No. 1162 (2017)Google Scholar
  10. 10.
    Grbić, J.: Universal spaces of two-cell complexes and their homotopy exponents. Quart. J. Math. Oxford 57, 355–366 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Grbić, J., Theriault, S., Wu, J.: Suspension splittings and James–Hopf invariants. Proc. Roy. Soc. Edinburgh Sect. A 144, 87–108 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    James, I.M.: Reduced product spaces. Ann. Math. 62, 170–197 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    McGibbon, C.A.: Homotopy commutativity in localized groups. Am. J. Math 106, 665–687 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Neisendorfer, J.A.: Properties of certain \(H\)-spaces. Quart. J. Math. 34, 201–209 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Selick, P., Wu, J.: On natural decompositions of loop suspensions and natural coalgebra decompositions of tensor algebras, Mem. Amer. Math. Soc. 148, No. 701 (2000)Google Scholar
  16. 16.
    Stasheff, J.: On homotopy abelian \(H\)-spaces. Math. Proc. Cambridge Philos. Soc. 57, 734–745 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sugawara, M.: On a condition that a space is an \(H\)-space. Math. J. Okayama Univ. 6, 109–129 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Theriault, S.D.: Properties of Anick’s spaces. Trans. Am. Math. Soc. 353, 1009–1037 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Theriault, S.D.: The \(H\)-structure of low rank torsion free \(H\)-spaces. Quart. J. Math. Oxford 56, 403–415 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Theriault, S.D.: The odd primary \(H\)-structure of Lie groups of low rank and its application to exponents. Trans. Am. Math. Soc. 359, 4511–4535 (2007)CrossRefzbMATHGoogle Scholar
  21. 21.
    Williams, F.D.: A theorem on homotopy-commutativity. Michigan Math. J. 18, 51–53 (1971)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Mathematical SciencesUniversity of SouthamptonSouthamptonUK
  2. 2.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations