Advertisement

manuscripta mathematica

, Volume 159, Issue 1–2, pp 13–38 | Cite as

Universal limit linear series and descent of moduli spaces

  • Max Lieblich
  • Brian OssermanEmail author
Article
  • 23 Downloads

Abstract

We introduce a formalism of descent of moduli spaces, and use it to produce limit linear series moduli spaces for families of curves in which the components of geometric fibers may have nontrivial monodromy. We then construct a universal stack of limit linear series over the stack of semistable curves of compact type, and produce new results on existence of real curves with few real linear series.

Mathematics Subject Classification

14H51 14D23 14N10 14P99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosch, S., Lütkebohmert, W., Raynaud, M.: Neron Models. Springer, Berlin (1991)zbMATHGoogle Scholar
  2. 2.
    Cools, F., Coppens, M.: Linear pencils on graphs and on real curves. Geom. Dedicata 169, 49–56 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Institut Des Hautes Etudes Scientifiques Publications Mathematiques 36, 75–109 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Eremenko, A., Gabrielov, A.: The Wronski map and Grassmannians of real codimension 2 subspaces. Comput. Methods Funct. Theory 1(1), 1–25 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eisenbud, D., Harris, J.: Limit linear series: basic theory. Invent. Math. 85(2), 337–371 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, troisième partie. Publications mathématiques de l’I.H.É.S., vol. 28. Institut des Hautes Études Scientifiques (1966)Google Scholar
  7. 7.
    Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, quatriéme partie. Publications mathématiques de l’I.H.É.S., vol. 32. Institut des Hautes Études Scientifiques (1967)Google Scholar
  8. 8.
    Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, Berlin (1977)CrossRefGoogle Scholar
  9. 9.
    Hein, N., Hillar, C., Sottile, F.: Lower bounds in real Schubert calculus. São Paolo J. Math. 7(1), 33–58 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Khosla, D.: Tautological classes on moduli spaces of curves with linear series and a pushforward formula when \(\rho =0\), preprintGoogle Scholar
  11. 11.
    Murray, J., Osserman, B.: Linked determinantal loci and limit linear series. Proc. AMS 144(6), 2399–2410 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Osserman, B.: Limit linear series for curves not of compact type. Journal für die reine und angewandte Mathematik (Crelle’s journal) to appear (30 pp)Google Scholar
  13. 13.
    Osserman, B.: The number of linear series on curves with given ramification. Int. Math. Res. Not. 2003(47), 2513–2527 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Osserman, B.: Linear series over real and \(p\)-adic fields. Proc. AMS 134(4), 989–993 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Osserman, B.: Limit linear series moduli stacks in higher rank, preprint (62 pp) (2014)Google Scholar
  16. 16.
    Osserman, B.: Relative dimension of morphisms and dimension for algebraic stacks. J. Algebra 437, 52–78 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    The Stacks Project Authors, Stacks project (2017). http://stacks.math.columbia.edu

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations