Skip to main content
Log in

Strong compactness in Sobolev spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We prove a strong compactness criterion in Sobolev spaces: given a sequence \((u_n)\) in \(W_{\text {loc}}^{1,p}({\mathbb {R}}^d)\), converging in \(L_{\text {loc}}^{p}\) to a map \(u\in W_{\text {loc}}^{1,p}({\mathbb {R}}^d)\) and such that \(|\nabla u_n | \le f\) almost everywhere, for some \(f\in L_{\text {loc}}^{p}({\mathbb {R}}^d)\), we provide a necessary and sufficient condition under which \((u_n)\) converges strongly to u in \(W_{\text {loc}}^{1,p}({\mathbb {R}}^d)\). In addition we prove a pointwise version of the criterion, according to which, given \((u_n)\) and u as above, but with no boundedness assumptions on the sequence of gradients, we have \(\nabla u_n \rightarrow \nabla u\) pointwise almost everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allaire, G., Francfort, G.: Existence of minimizers for nonquasiconvex functionals arising in optimal design. Ann. Inst. Henri Poincaré Anal. Non Lineaire 15, 301–339 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubert, G., Taharaoui, R.: Theoremes d’existence en optimization non convexe. Appl. Anal. 18, 75–100 (1984)

    Article  MATH  Google Scholar 

  3. Cellina, A., Colombo, G.: On a classical problem of the calculus of variations without convexity conditions. Ann. Inst. Henri Poincaré Anal. Non Lineaire 7, 97–106 (1990)

    Article  MATH  Google Scholar 

  4. Cellina, A., Zagatti, S.: An existence result for a minimum problem in the vectorial case of the calculus of variations. SIAM J. Control Optim. 33, 960–970 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cannarsa, P., Sinestrari, C.: Semiconcave Functions Hamilton–Jacobi Equations and Optimal Control. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  6. Dacorogna, B.: Non convex problems of the calculus of variations and differential inclusions. In: Canada A., Drábek P., Fonda A. (eds.) Handbook of Differential Equations, vol. 2, chapter 2, pp. 57–126. Elsevier, North Holland (2005)

  7. Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  8. Dacorogna, B., Marcellini, P.: General existence theorems for Hamilton–Jacobi equations in scalar and vectorial cases. Acta Math. 178, 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dacorogna, B., Marcellini, P.: Existence of minimizers for non quasiconvex integrals. Arch. Ration. Mech. Anal. 131, 359–399 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 443–475 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  12. Faraco, D., Kristensen, J.: Compactness versus regularity in the calculus of variations. DCDS-B 17(2), 473–485 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Fonseca, I., Fusco, N., Marcellini, P.: An existence result for a nonconvex variational problem via regularity. Control Optim. Calc. Var. 7, 69–95 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marcellini, P.: Non convex integrals of the calculus of variations. In: Cellina, A. (ed.) Methods of Nonconvex Analysis. Lecture Notes in Mathematics, vol. 1446, pp. 16–57. Springer, Berlin (1990)

    Chapter  Google Scholar 

  15. Mascolo, E., Schianchi, R.: Existence theorems in the calculus of variations. J. Differ. Equ. 67, 185–198 (1987)

    Article  MathSciNet  Google Scholar 

  16. Müller, S., Sveràk, V.: Attainment results for the two-well problem by convex integrations. In: Jost, J. (ed.) Geometric Analysis and the Calculus of Variations. For Stefan Hildebrandt, pp. 239–251. International Press, Cambridge (1996)

    Google Scholar 

  17. Raymond, J.P.: Conditions necessaires et suffisantes de solutions en calcul des variations. Ann. Inst. Henri Poincaré Anal. Non Lineaire 4, 169–202 (1987)

    Article  MATH  Google Scholar 

  18. Raymond, J.P.: Existence of minimizers for vector problems without quasiconvexity conditions. Nonliner Anal. Theory Methods Appl. 18, 815–828 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Taharaoui, R.: Sur une classe de fonctionnelles non convexes et applications. SIAM J. Math. Anal. 21, 37–52 (1990)

    Article  MathSciNet  Google Scholar 

  20. Wheeden, R.L., Zygmund, A.: Measure and Integral. Dekker, New York (1977)

    MATH  Google Scholar 

  21. Zagatti, S.: On the Dirichlet problem for vectorial Hamilton–Jacobi equations. SIAM J. Math. Anal. 29, 1481–1491 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zagatti, S.: Minimization of the functional of the gradient by Baire’s Theorem. SIAM J. Control Optim. 38(2), 384–399 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zagatti, S.: On the minimum problem for non convex scalar functional. SIAM J. Math. Anal. 37(3), 982–995 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zagatti, S.: On the minimum problem for non convex scalar functionals. SIAM J. Math. Anal. 37, 982–995 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zagatti, S.: Uniqueness and continuous dependence on boundary data for integro-extremal minimizer of the functional of the gradient. J. Convex Anal. 14, 705–727 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Zagatti, S.: Solutions of Hamilton–Jacobi equations and minimizers of non quasiconvex functionals. J. Math. Anal. Appl. 335, 1143–1160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zagatti, S.: Minimizers of non convex scalar functionals and viscosity solutions of Hamilton–Jacobi equations. Calc. Var. PDE’s 31(4), 511–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zagatti, S.: Qualitative properties of integro-extremal minimizers of non-homogeneous scalar functionals. Int. J. Pure Appl. Math. 51(1), 103–116 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Zagatti, S.: Minimization of non quasiconvex functionals by integro-extremization method. DCDS-A 21(2), 625–641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zagatti, S.: Maximal generalized solution of eikonal equation. J. Differ. Equ. 257, 231–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zagatti, S.: Maximal generalized solution for a class of Hamilton–Jacobi equations. Adv. Pure Appl. Math 7, 123–141 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zagatti, S.: Maximal generalized solutions for Hamilton–Jacobi equations. Ann. Univ. Ferrara Sez. VII Sci. Mat. 62, 373–398 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zagatti, S.: A well posedness result for generalized solutions of Hamilton–Jacobi equations. Adv. Differ. Equ. 22(3–4), 259–304 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Zagatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagatti, S. Strong compactness in Sobolev spaces. manuscripta math. 156, 303–327 (2018). https://doi.org/10.1007/s00229-017-0970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0970-3

Mathematics Subject Classification

Navigation