Orbifold Milnor lattice and orbifold intersection form



For a germ of a quasihomogeneous function with an isolated critical point at the origin invariant with respect to an appropriate action of a finite abelian group, H. Fan, T. Jarvis, and Y. Ruan defined the so-called quantum cohomology group. It is considered as the main object of the quantum singularity theory (FJRW-theory). We define orbifold versions of the monodromy operator on the quantum (co)homology group, of the Milnor lattice, of the Seifert form and of the intersection form. We also describe some symmetry properties of invariants of invertible polynomials refining the known ones.

Mathematics Subject Classification

14R20 57R18 32S05 58K65 58K70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol. II. Birkhäuser, Boston (1988)CrossRefMATHGoogle Scholar
  2. 2.
    Berglund, P., Hübsch, T.: A generalized construction of mirror manifolds. Nucl. Phys. B 393, 377–391 (1993)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Berglund, P., Henningson, M.: Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus. Nucl. Phys. B 433, 311–332 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ebeling, W., Gusein-Zade, S.M.: Orbifold zeta functions for dual invertible polynomials. Proc. Edinb. Math. Soc. 60(1), 99–106 (2017)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ebeling, W., Gusein-Zade, S.M., Takahashi, A.: Orbifold E-functions of dual invertible polynomials. J. Geom. Phys. 106, 184–191 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ebeling, W., Takahashi, A.: Mirror symmetry between orbifold curves and cusp singularities with group action. Int. Math. Res. Not. 2013, 2240–2270 (2013)MathSciNetMATHGoogle Scholar
  7. 7.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. (2) 178(1), 1–106 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gabrielov, A.M.: Intersection matrices for certain singularities. Funkcional. Anal. i Prilozen. 7(3), 18–32 (1973) (Engl. translation in Funct. Anal. Appl. 7, 182–193 (1974))Google Scholar
  9. 9.
    Ito, Y., Reid, M.: The McKay correspondence for finite subgroups of \({{\rm SL}}(3,{\mathbb{C}})\). In: Higher-Dimensional Complex Varieties (Trento, 1994), pp. 221–240. de Gruyter, Berlin (1996)Google Scholar
  10. 10.
    Krawitz, M.: FJRW-Rings and Landau–Ginzburg Mirror Symmetry. Preprint. arXiv:0906.0796
  11. 11.
    Kreuzer, M., Skarke, H.: On the classification of quasihomogeneous functions. Commun. Math. Phys. 150, 137–147 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zaslow, E.: Topological orbifold models and quantum cohomology rings. Commun. Math. Phys. 156(2), 301–331 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut für Algebraische GeometrieLeibniz Universität HannoverHannoverGermany
  2. 2.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations