Advertisement

manuscripta mathematica

, Volume 152, Issue 1–2, pp 199–222 | Cite as

Derived Picard groups of selfinjective Nakayama algebras

  • Yury Volkov
  • Alexandra Zvonareva
Article
  • 100 Downloads

Abstract

In our preceding paper a generating set of the derived Picard group of a selfinjective Nakayama algebra was constructed combining some previous results for Brauer tree algebras and the technique of orbit categories developed there. In this paper we finish the computation of the derived Picard group of a selfinjective Nakayama algebra.

Mathematics Subject Classification

16D90 18E30 20F36 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keller, B.: Hochschild cohomology and derived Picard groups. J. Pure Appl. Algebra 190, 177–196 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Huisgen-Zimmermann, B., Saorín, M.: Geometry of chain complexes and outer automorphisms under derived equivalence. Trans. Am. Math. Soc. 353(12), 4757–4777 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Rouquier, R.: Automorphismes, graduations et catégories triangulées. J. Inst. Math. Jussieu 10(3), 713–751 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rouquier, R., Zimmermann, A.: Picard groups for derived module categories. Proc. Lond. Math. Soc. 87(1), 197–225 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yekutieli, A.: Dualizing complexes, Morita equivalence and the derived Picard group of a ring. J. Lond. Math. Soc. 60(3), 723–746 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Miyachi, J.I., Yekutieli, A.: Derived Picard groups of finite-dimensional hereditary algebras. Compost. Math. 129(3), 341–368 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lenzing, H., Meltzer, H.: The automorphism group of the derived category for a weighted projective line. Commun. Algebra 28(4), 1685–1700 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Broomhead, N., Pauksztello, D., Ploog, D.: Discrete derived categories I: homomorphisms, autoequivalences and t-structures. (2013). arXiv:1312.5203
  9. 9.
    Zimmermann, A.: Self-equivalences of the derived category of Brauer tree algebras with exceptional vertex. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 9(1), 139–148 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Schaps, M., Zakay-Illouz, E.: Braid group action on the refolded tilting complex of the Brauer star algebra. Proc. ICRA IX Beijing 2, 434–449 (2002)zbMATHGoogle Scholar
  11. 11.
    Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108(1), 37–108 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15(1), 203–271 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Muchtadi-Alamsyah, I.: Braid action on derived category of Nakayama algebras. Commun. Algebra 36(7), 2544–2569 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zvonareva, A.: Mutations and the derived Picard group of the Brauer star algebra. J. of Algebra. 443, 270–299 (2015)Google Scholar
  15. 15.
    Volkov, Y., Zvonareva, A.: On standard derived equivalences of orbit categories. (2015). arXiv:1501.00709
  16. 16.
    Efimov, A.: Braid group actions on triangulated categories. The Möbius contest paper (2007)Google Scholar
  17. 17.
    Rickard, J.: Derived equivanences as derived functors. J. Lond. Math. Soc. 43(1), 37–48 (1991)CrossRefzbMATHGoogle Scholar
  18. 18.
    Keller, B.: Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27(1), 63–102 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. 39(3), 436–456 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bolla, M.: Isomorphisms between endomorphism rings of progenerators. J. Algebra 87(1), 261–281 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Linckelmann, M.: Stable equivalences of Morita type for self-injective algebras and \(p\)-groups. Math. Z. 223(1), 87–100 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pollack, R.D.: Algebras and their automorphism groups. Commun. Algebra 17(8), 1843–1866 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guil-Asensio, F., Saorín, M.: The group of outer automorphisms and the Picard group of an algebra. Algebra Represent. Theory 2(4), 313–330 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Erdmann, K., Holm, T.: Twisted bimodules and Hochschild cohomology for self-injective algebras of class \(A_n\). Forum Math. 11(2), 177–201 (1999)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Brieskorn, E., Saito, K.: Artin-gruppen und Coxeter-gruppen. Invent. Math. 17(4), 245–271 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Charney, R., Peifer, D.: The \(K(\pi,1)\)-conjecture for the affine braid group. Comment. Math. Helv. 78(3), 584–600 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Allcock, D.: Braid pictures for Artin groups. Trans. Am. Math. Soc. 354(9), 3455–3474 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Birman, J.S.: Mapping class groups and their relationship to braid groups. Commun. Pure Appl. Math. 22(2), 213–238 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lyndon, R.C., Schupp, P. E.: Combinatorial group theory. Ergebnisse der Math., Springer, Berlin 89 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Universidade de São PauloSão PauloBrazil
  2. 2.Saint Petersburg State UniversitySaint PetersburgRussia
  3. 3.Chebyshev LaboratorySaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations