Manuscripta Mathematica

, Volume 150, Issue 3–4, pp 499–520 | Cite as

Good ideals and \({p_{g}}\)-ideals in two-dimensional normal singularities

  • Tomohiro OkumaEmail author
  • Kei-ichi Watanabe
  • Ken-ichi Yoshida


In this paper, we introduce the notion of \({p_{g}}\)-ideals and \({p_{g}}\)-cycles, which inherits nice properties of integrally closed ideals on rational singularities. As an application, we prove an existence of good ideals for two-dimensional Gorenstein normal local rings. Moreover, we classify all Ulrich ideals for two-dimensional simple elliptic singularities.

Mathematics Subject Classification

Primary 13A35 Secondary 14B05 14J17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin M.: On isolated rational singularities of surfaces. Am. J. Math. 88, 129–136 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Corso A., Polini C., Ulrich B.: Core and residual intersection of ideals. Trans. Am. Math. Soc. 354, 2579–2594 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cutkosky S.D.: A new characterization of rational surface singularities. Invent. Math. 102, 157–177 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Giraud J.: Improvement of Grauert-Riemenschneider’s Theorem for a normal surface. Ann. Inst. Fourier Grenoble 32, 13–23 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Goto S., Iai S., Watanabe K.: Good ideals in Gorenstein local rings. Trans. Am. Math. Soc. 353, 2309–2346 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Goto S., Ozeki K., Takahashi R., Watanabe K., Yoshida K.: Ulrich ideals and modules. Math. Proc. Camb. Philos. Soc. 156, 137–166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Goto, S., Ozeki, K., Takahashi, R., Watanabe, K., Yoshida, K.: Ulrich ideals and modules over two-dimensional rational singularities. Nagoya. Math. JGoogle Scholar
  8. 8.
    Goto, S., Shimoda, Y.: On the Rees algebras of Cohen–Macaulay local rings, Commutative algebra (Fairfax, Va., 1979), Lecture Notes in Pure and Appl.Math., vol. 68, Dekker, New York, 1982, pp. 201–231. MR 655805 (84a:13021)Google Scholar
  9. 9.
    Hyry E., Smith K.E.: On a non-vanishing conjecture of Kawamata and the core of an ideal. Am. J. Math. 125(6), 1349–1410 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kato M.: Riemann–Roch theorem for strongly pseudoconvexmanifolds of dimension 2. Math. Ann. 222, 243–250 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Laufer H.: On rational singularities. Am. J. Math. 94, 31–62 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Laufer H.: On minimally elliptic singularities. Am. J. Math. 99, 1257–1295 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lipman J.: Rational singularities with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math. 36, 195–279 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pinkham H.: Normal surface singularities with C* action. Math. Ann. 227, 183–193 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Reid, M.: Chapters on algebraic surfaces, Complex algebraic geometry, IAS/Park City Math. Ser., vol.3, Amer. Math. Soc. Providence, RI, 1997, pp. 3–159Google Scholar
  16. 16.
    Wahl J.: Vanishing theorems for resolutions of surface singularities. Lnventiones Math. 31, 17–41 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Watanabe J.: m-Full ideal. Nagoya Math. J. 106, 101–111 (1987)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Watanabe K., Yoshida K.: Hilbert–Kunz multiplicity, McKay correspondence and good ideals in two-dimensional rational singularities. Manuscr. Math. 104, 275–294 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yau S.S.-T.: On maximally elliptic singularities. Trans. Am. Math. Soc. 257, 269–329 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tomohiro Okuma
    • 1
    Email author
  • Kei-ichi Watanabe
    • 2
  • Ken-ichi Yoshida
    • 2
  1. 1.Department of Mathematical Sciences, Faculty of ScienceYamagata UniversityYamagataJapan
  2. 2.Department of Mathematics, College of Humanities and SciencesNihon UniversityTokyoJapan

Personalised recommendations