Manuscripta Mathematica

, Volume 150, Issue 3–4, pp 407–413 | Cite as

On smooth hypersurfaces containing a given subvariety

Open Access
Original Paper

Abstract

We show when a nonsingular closed subvariety Y of a nonsingular affine real variety X is contained in a nonsingular hypersurface. We also solve this problem in a holomorphic case.

Mathematics Subject Classification

14 R 10 14 R 99 

References

  1. 1.
    Bochnak J., Coste M., Roy M.F.: Real Algebraic Geometry. Springer, Berlin (2005)MATHGoogle Scholar
  2. 2.
    Forster, O.: Topologische Methoden in der Theorie Steinischer Räume. Actes du Congres International des Mathematiciens, Nice, 1970, Tome 2, pp. 613–618, Gauthiers-Villars, Paris (1971)Google Scholar
  3. 3.
    Forstneric F.: Stein Manifolds and Holomorphic Mappings. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Greco, S., Valabrega, P.: On the singular locus of a complete intersection through a variety in projective space. Bollettino U.M.I. VI-D 113-145 (1983)Google Scholar
  5. 5.
    Guillemin V., Pollack A.: Differential Topology. Prentice-Hall Inc., Englewood Cliffs (1974)MATHGoogle Scholar
  6. 6.
    Husemoller D.: Fibre Bundles. Springer, New York (1994)CrossRefMATHGoogle Scholar
  7. 7.
    Kleiman S., Altman A.: Bertini theorems for hypersurface sections containing a subscheme. Commun. Algebra 7(8), 775–790 (1979)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Milnor J.: Morse Theory, Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963)Google Scholar
  9. 9.
    Raynaud M.: Modules projectifs universels. Invent. Math. 6, 1–26 (1968)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Serre, J.P.: Modules projectifs et espaces fibres a fibre vectorielle. Sem. Dubreil-Pisot, No. 23, Paris (1957/1958)Google Scholar
  11. 11.
    Whitney, H.: On the Topology of Differentiable Manifolds. Lectures in Topology. University of Michigan Press, pp. 101–141 (1941)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Instytut Matematyczny PANWarszawaPoland
  2. 2.Instytut Matematyki UJKrakówPoland

Personalised recommendations