Manuscripta Mathematica

, Volume 150, Issue 1–2, pp 211–245 | Cite as

On the Tate–Shafarevich group of Abelian schemes over higher dimensional bases over finite fields

Article

Abstract

We study analogues for the Tate–Shafarevich group for Abelian schemes with everywhere good reduction over higher dimensional bases over finite fields.

Mathematics Subject Classification

19F27 14F22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin M.: Algebraic approximation of structures over complete local rings. Publ. Math. IHÈS 36, 23–58 (1969)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bosch, S., Lütkebohmert, W., Raynaud, M.: Nèron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 21. p. 325 x. Springer, Berlin etc. (1990)Google Scholar
  3. 3.
    Bosch, S. (eds): Algebra. fünfte Auflage, Springer-Lehrbuch. Springer, Berlin (2003)Google Scholar
  4. 4.
    Conrad, B.: Math 248B. Picard functors for curves. http://math.stanford.edu/~conrad/248BPage/handouts/pic.pdf
  5. 5.
    Deninger C.: A proper base change theorem for non-torsion sheaves in ètale cohomology. J. Pure Appl. Algebra 50(3), 231–235 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    de Jong, A.J.: A result of Gabber. www.math.columbia.edu/~dejong/papers/2-gabber.pdf
  7. 7.
    Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics. 150. p. 785 xvi. Springer, Berlin (1995)Google Scholar
  8. 8.
    Fantechi, B., Göttsche, L., Illusie, L. et al.: Fundamental algebraic geometry: Grothendieck’s FGA explained. Mathematical Surveys and Monographs 123. p. 339 x. American Mathematical Society (AMS), Providence, RI (2005)Google Scholar
  9. 9.
    Fu, L.: Ètale cohomology theory. Nankai Tracts in Mathematics 13. p. 611 ix. World Scientific, Hackensack, NJ (2011)Google Scholar
  10. 10.
    Fu L.: Le groupe de Brauer. III: Exemples et complements. Dix Exposes Cohomologie Schemas, Advanced Studies Pure Math. 3, 88–188 (1968)MathSciNetGoogle Scholar
  11. 11.
    Görtz, U., Wedhorn, T.: Algebraic geometry I. Schemes. With examples and exercises. Advanced Lectures in Mathematics. p. 615 vii. Vieweg+Teubner, Wiesbaden (2010)Google Scholar
  12. 12.
    Hartshorne, R.: Algebraic geometry. Corr. 3rd printing. Graduate Texts in Mathematics, 52. p. 496 XVI. Springer, New York, Heidelberg, Berlin (1983)Google Scholar
  13. 13.
    Kahn B.: Sur le groupe des classes d’un schéma arithmétique (Avec un appendice de Marc Hindry). Bull. Soc. Math. Fr. 134(3), 395–415 (2006)MathSciNetGoogle Scholar
  14. 14.
    Keller, T.: On the conjecture of Birch and Swinnerton-Dyer for Abelian schemes over higher dimensional bases over finite fields. Preprint, (2014)Google Scholar
  15. 15.
    Lichtenbaum, S.: Zeta-functions of varieties over finite fields at s = 1. Arithmetic and geometry, Pap. dedic. I. R. Shafarevich, Vol. I: Arithmetic, Prog. Math. 35:173–194 (1983)Google Scholar
  16. 16.
    Liu, Q.: Algebraic geometry and arithmetic curves. Transl. by Reinie Erné. Oxford Graduate Texts in Mathematics 6. Oxford University Press, Oxford, p. 577 xv (2006)Google Scholar
  17. 17.
    Matsumura H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge (1986)Google Scholar
  18. 18.
    Milne, J.S.: Ètale Cohomology. Princeton Mathematical Series. 33. Princeton University Press, Princeton, New Jersey. p. 323 XIII (1980)Google Scholar
  19. 19.
    Milne, J.S.: Abelian varieties. Arithmetic Geometry. In: Pap. Conf., Storrs/Conn. 1984, pp. 103–150 (1986)Google Scholar
  20. 20.
    Milne, J.S.: Arithmetic Duality Theorems. Perspectives in Mathematics, Vol. 1. Academic Press. Inc., Boston etc. Harcourt Brace Jovanovich, Publishers. p. 421 X (1986)Google Scholar
  21. 21.
    Mumford, D.: Abelian Varieties. Oxford University Press. p. viii, 242 (1970)Google Scholar
  22. 22.
    Poonen B.: Bertini theorems over finite fields. Ann. Math. 160(3), 1099–1127 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Serre J.-P.: Galois Cohomology. Translation from the French by Patrick Ion. 2nd printing. Springer, Berlin (2002)MATHGoogle Scholar
  24. 24.
    Tate, J.T.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Dix Exposés Cohomologie Schémas, Advanced Studies Pure Math. 3, 189–214 (1968); Sém. Bourbaki 1965/66, Exp. No. 306, 415–440. (1966)Google Scholar
  25. 25.
    Weibel C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge (1997)Google Scholar
  26. 26.
    Grothendieck A., Dieudonnè J.: Èlèments de gèomètrie algèbrique: II. Ètude globale èlèmentaire de quelques classes de morphismes. Publ. Math. IHÈS 8, 5–222 (1961)CrossRefGoogle Scholar
  27. 27.
    Grothendieck A., Dieudonnè J.: Elèments de gèomètrie algèbrique: III. Ètude cohomologique des faisceaux cohèrents, Première partie. Publ. Math. IHÈS 11, 5–167 (1961)CrossRefGoogle Scholar
  28. 28.
    Grothendieck A., Dieudonnè J.: Èlèments de gèomètrie algèbrique: III. Ètude cohomologique des faisceaux cohèrents, Seconde partie. Publ. Math. IHÈS 17, 5–91 (1963)CrossRefMATHGoogle Scholar
  29. 29.
    Grothendieck A., Dieudonnè J.: Èlèments de gèomètrie algèbrique: IV. Ètude locale des schèmas et des morphismes de schèmas, Troisième partie. Publ. Math. IHÈS 28, 5–255 (1966)CrossRefGoogle Scholar
  30. 30.
    Grothendieck A., Dieudonnè J.: Èlèments de gèomètrie algèbrique : IV. Ètude locale des schèmas et des morphismes de schèmas, Quatrième partie. Publ. Math. IHÈS 32, 5–361 (1967)CrossRefMATHGoogle Scholar
  31. 31.
    Grothendieck, A.: Sèminaire de Gèomètrie Algèbrique du Bois Marie—1960–61—Revêtements ètales et groupe fondamental – (SGA 1). (Lecture notes in mathematics 224). xxii+447. Springer, Berlin, New York (1971)Google Scholar
  32. 32.
    Artin, M., Grothendieck, A., Verdier, J.-L.: Sèminaire de èomètrie Algèbrique du Bois Marie—1963–64—Thèorie des topos et cohomologie ètale des schèmas—(SGA 4)—vol. 2. Lecture notes in mathematics (in French) 270. iv+418. Springer, Berlin; New York (1972)Google Scholar
  33. 33.
    Artin, M., Grothendieck, A., Verdier, J.-L.: Sèminaire de èomètrie Algèbrique du Bois Marie—1963–64—Thèorie des topos et cohomologie ètale des schèmas—(SGA 4)—vol. 3. Lecture notes in mathematics (in French) 305. vi+640. Springer, Berlin, New York (1972)Google Scholar
  34. 34.
    Berthelot, P., Grothendieck, A., Illusie, L.: Sèminaire de Gèomètrie Algèbrique du Bois Marie—1966–67—Thèorie des intersections et thèorème de Riemann-Roch—(SGA 6). Lecture notes in mathematics (in French) 225. xii+700. Springer, Berlin, New York. (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations