Advertisement

Manuscripta Mathematica

, Volume 145, Issue 3–4, pp 235–242 | Cite as

On surfaces with zero vanishing cycles

  • Serge Lvovski
Article
  • 110 Downloads

Abstract

We show that using an idea from a paper by Van de Ven one may obtain a simple proof of Zak’s classification of smooth projective surfaces with zero vanishing cycles. This method of proof allows one to extend Zak’s theorem to the case of finite characteristic.

Mathematics Subject Classification (2010)

14D05 14N99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Grothendieck, A., Verdier, J. L.: Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics, Vol. 305. Springer, Berlin, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat (1973)Google Scholar
  2. 2.
    Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. II. Lecture Notes in Mathematics, Vol. 340. Springer, Berlin, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par P. Deligne et N. KatzGoogle Scholar
  3. 3.
    Deligne P.: La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43, 273–307 (1974)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Deligne P.: La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52, 137–252 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fáry I.: Cohomologie des variétés algébriques. Ann. Math. (2) 65, 21–73 (1957)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)Google Scholar
  7. 7.
    Hefez, A., Kleiman, S.L.: Notes on the duality of projective varieties. In: Geometry Today (Rome, 1984), vol. 60 of Progr. Math., pp. 143–183. Birkhäuser Boston, Boston, MA (1985)Google Scholar
  8. 8.
    Kleiman, S.L.: Tangency and duality. In: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, Vol. 6 of CMS Conf. Proc., pp. 163–225. Am. Math. Soc., Providence, RI (1986)Google Scholar
  9. 9.
    Lanteri, A.: A characterization of k-dimensional scrolls. Istit. Lombardo Accad. Sci. Lett. Rend. A, 114, 157–163 (1982) 1980Google Scholar
  10. 10.
    Lanteri A.: Algebraic surfaces containing a smooth curve of genus q(S) as an ample divisor. Geom. Dedicata 17(2), 189–197 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lanteri A., Palleschi, M.: A characteristic condition for an algebraic variety to be a scroll. Istit. Lombardo Accad. Sci. Lett. Rend. A, 115, 113–122 (1984) 1981Google Scholar
  12. 12.
    L’vovsky S.: On curves and surfaces with projectively equivalent hyperplane sections. Can. Math. Bull. 37(3), 384–392 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ramanujam, C.P.: Supplement to the article “Remarks on the Kodaira vanishing theorem” (J. Indian Math. Soc. (N.S.) 36 (1972), 41–51). J. Indian Math. Soc. (N.S.), 38(1,2,3,4), 121–124 (1975), 1974Google Scholar
  14. 14.
    Van de Ven A.: On the 2-connectedness of very ample divisors on a surface. Duke Math. J. 46(2), 403–407 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zak, F.L.: Surfaces with zero Lefschetz cycles. Mat. Zametki 13, 869–880 (1973). English translation: Math. Notes 13, 520–525 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Math department, AG LaboratoryNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations