Manuscripta Mathematica

, Volume 141, Issue 3–4, pp 391–422 | Cite as

Period- and mirror-maps for the quartic K3

  • Heinrich Hartmann


We study in detail mirror symmetry for the quartic K3 surface in \({\mathbb{P}^3}\) and the mirror family obtained by the orbifold construction. As explained by Aspinwall and Morrison (Mirror symmetry II, 1997), mirror symmetry for K3 surfaces can be entirely described in terms of Hodge structures. (1) We give an explicit computation of the Hodge structures and period maps for these families of K3 surfaces. (2) We identify a mirror map, i.e. an isomorphism between the complex and symplectic deformation parameters and explicit isomorphisms between the Hodge structures at these points. (3) We show compatibility of our mirror map with the one defined by Morrison (Essays on mirror manifolds, 1992) near the point of maximal unipotent monodromy. Our results rely on earlier work by Narumiyah–Shiga (Proceedings on Moonshine and related topics, 2001), Dolgachev (J. Math. Sci., 1996) and Nagura–Sugiyama (Int. J. Mod. Phys. A, 1995).

Mathematics Subject Classification

14J28 14D07 14J33 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aspinwall, P.S., Morrison, D.R.: String theory on K3 surfaces. In: Mirror Symmetry II, vol. 1 of AMS/IP Studies in Advanced Mathematics, pp. 703–716. American Mathematical Society, Providence (1997)Google Scholar
  2. 2.
    Auroux D., Katzarkov L., Orlov D.: Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves. Invent. Math. 166(3), 537–582 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bailey W.N.: Generalized Hypergeometric Series. Cambridge University Press, Cambridge (1935)zbMATHGoogle Scholar
  4. 4.
    Beauville, A., Bourguignon, J.-P., Demazure, M.: Géométrie des surfaces K3: modules et périodes. Société Mathématique de France, Paris (1985)Google Scholar
  5. 5.
    Belcastro S.-M.: Picard lattices of families of K3 surfaces. Commun. Algebra 30(1), 61–82 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Beukers, F.: Gauss’ hypergeometric function. In: Arithmetic and Geometry Around Hypergeometric Functions, vol. 260 of Progress in Mathematics, pp. 23–42. Birkhäuser, Basel (2007)Google Scholar
  7. 7.
    Candelas P., de la Ossa X., Green P.S., Parkes L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359(1), 21–74 (1991)zbMATHCrossRefGoogle Scholar
  8. 8.
    Carlson, J., Müller-Stach, S., Peters, C.: Period Mappings and Period Domains, vol. 85 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2003)Google Scholar
  9. 9.
    Dolgachev I.V.: Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci. 81(3), 2599–2630 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Efimov A.I.: A remark on mirror symmetry for curves. Uspekhi Mat. Nauk 65(5(395)), 191–192 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fukaya K.: Mirror symmetry of abelian varieties and multi-theta functions. J. Algebraic Geom. 11(3), 393–512 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Griffiths P.A.: On the periods of certain rational integrals. I, II. Ann. Math. 90, 496–541 (1969)CrossRefGoogle Scholar
  13. 13.
    Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1978)Google Scholar
  14. 14.
    Gross M., Siebert B.: From real affine geometry to complex geometry. Ann. Math.(2) 174(3), 1301–1428 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gross, M., Katzarkov, L., Ruddat, H.: Towards mirror symmetry for varieties of general type. Preprint arXiv:1202.4042 (2012)Google Scholar
  16. 16.
    Huybrechts, D.: Moduli spaces of hyperkähler manifolds and mirror symmetry. In: Intersection Theory and Moduli. ICTP Lecture Notes XIX, pp. 185–247. The Abdus Salam International Centre for Theoretical Physics, Trieste (2004)Google Scholar
  17. 17.
    Huybrechts D.: Generalized Calabi–Yau structures. K3 surfaces and B-fields. Int. J. Math. 16(1), 13–36 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ince E.L.: Ordinary Differential Equations. Dover Publications, New York (1944)zbMATHGoogle Scholar
  19. 19.
    Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Preprint arXiv/0903.1463 (2009)Google Scholar
  20. 20.
    Kapustin A., Katzarkov L., Orlov D., Yotov M.: Homological mirror symmetry for manifolds of general type. Cent. Eur. J. Math. 7(4), 571–605 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Katzarkov, L.: Generalized homological mirror symmetry and rationality questions. In: Cohomological and Geometric Approaches to Rationality Problems, vol. 282 of Progress in Mathematics, pp. 163–208. Birkhäuser, Boston (2010)Google Scholar
  22. 22.
    Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. In: From Hodge Theory to Integrability and TQFT tt*-Geometry, vol. 78 of Proceedings of Symposia in Pure Mathematics, pp. 87–174. American Mathematical Society, Providence (2008)Google Scholar
  23. 23.
    Klein F.: Vorlesungen über Hypergeometrische Funktionen. Springer, Berlin (1933)CrossRefGoogle Scholar
  24. 24.
    Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Z ürich, 1994), pp. 120–139. Birkhäuser, Basel (1995)Google Scholar
  25. 25.
    Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 203–263. World Scientific Publishing, River Edge (2001)Google Scholar
  26. 26.
    Lian B. H., Yau S.-T.: Arithmetic properties of mirror map and quantum coupling. Commun. Math. Phys 176(1), 163–191 (1996)CrossRefGoogle Scholar
  27. 27.
    Morrison, D. R.: Picard-Fuchs equations and mirror maps for hypersurfaces. In: Essays on Mirror Manifolds, pp. 241–264. International Press, Hong Kong (1992)Google Scholar
  28. 28.
    Moser J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)zbMATHCrossRefGoogle Scholar
  29. 29.
    Nagura M., Sugiyama K.: Mirror symmetry of the K3 surface. Int. J. Mod. Phys. A 10(2), 233–252 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Narumiya, N., Shiga, H.: The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope. In: Proceedings on Moonshine and Related Topics (Montréal, QC, 1999), vol. 30 of CRM Proceedings and Lecture Notes, pp. 139–161. American Mathematical Society, Providence (2001)Google Scholar
  31. 31.
    Nikulin V. V.: Finite groups of automorphisms of K ählerian surfaces of type K3. Uspehi Mat. Nauk 31(2(188)), 223–224 (1976)Google Scholar
  32. 32.
    Nikulin, V.V.: Integral symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43(1), 111–177, 238 (1979)Google Scholar
  33. 33.
    Nohara, Y., Ueda, K.: Homological mirror symmetry for the quintic 3-fold. Preprint arXiv:1103.4956 (2011)Google Scholar
  34. 34.
    Orlov D.O.: Equivalences of derived categories and K3 surfaces. J. Math. Sci. (N.Y.) 84(5), 1361–1381 (1997)zbMATHCrossRefGoogle Scholar
  35. 35.
    Peters C.: Monodromy and Picard-Fuchs equations for families of K3-surfaces and elliptic curves. Ann. Sci. École Norm. Sup. (4) 19(4), 583–607 (1986)zbMATHGoogle Scholar
  36. 36.
    Polishchuk A., Zaslow E.: Categorical mirror symmetry: the elliptic curve. Adv. Theor. Math. Phys 2(2), 443–470 (1998)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Rohsiepe, F.: Lattice polarized toric K3 surfaces, arxiv:hep-th/0409290v1. Preprint arXiv:hep-th/0409290v1 (2004)Google Scholar
  38. 38.
    Seidel, P.: Homological mirror symmetry for the quartic surface. Preprint arXiv/math.SG/0310414 (2003)Google Scholar
  39. 39.
    Seidel P.: Homological mirror symmetry for the genus two curve. J. Algebraic Geom. 20(4), 727–769 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Sheridan, N.: Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space. Preprint arXiv:1111.0632 (2011)Google Scholar
  41. 41.
    Smith, J.P.: Picard-Fuchs Differential Equations for Families of K3 Surfaces. PhD thesis, University of Warwick, 2007Google Scholar
  42. 42.
    Verrill, H., Yui, N.: Thompson series, and the mirror maps of pencils of K3 surfaces. In: The Arithmetic and Geometry of Algebraic Cycles (Banff., AB, 1998), vol. 24 of CRM Proceedings and Lecture Notes, pp. 399–432. American Mathematical Society, Providence (2000)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute for MathematicsBonn UniversityBonnGermany

Personalised recommendations