Manuscripta Mathematica

, Volume 141, Issue 1–2, pp 125–147 | Cite as

Minimal Hölder regularity implying finiteness of integral Menger curvature

Open Access


We study two kinds of integral Menger-type curvatures. We find a threshold value of α0, a Hölder exponent, such that for all αα0 embedded C1,α manifolds have finite curvature. We also give an example of a \({C^{1,\alpha_0}}\) injective curve and higher dimensional embedded manifolds with unbounded curvature.

Mathematics Subject Classification (1991)

Primary: 49Q10 Secondary: 28A75 49Q20 49Q15 


  1. 1.
    Banavar J.R., Gonzalez O., Maddocks J.H., Maritan A.: Self-interactions of strands and sheets. J. Stat. Phys. 110(1–2), 35–50 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Blatt, S.: A note on integral Menger curvature for curves. Preprint (2011)Google Scholar
  3. 3.
    Blatt S., Kolasiński S.: Sharp boundedness and regularizing effects of the integral Menger curvature for submanifolds. Adv. Math. 230(3), 839–852 (2012). doi:10.1016/j.aim.2012.03.007 MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    David G., Semmes S.: Analysis of and on Uniformly Rectifiable Sets, vol. 38 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1993)Google Scholar
  5. 5.
    Gonzalez O., Maddocks J.H.: Global curvature, thickness, and the ideal shapes of knots. Proc. Natl Acad. Sci. USA 96(9), 4769–4773 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gonzalez O., Maddocks J.H., Schuricht F.,von der Mosel H.: Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Partial Differ. Equ. 14(1), 29–68 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Kolasiński, S.: Integral Menger curvature for sets of arbitrary dimension and codimension. PhD thesis, Institute of Mathematics, University of Warsaw (2011). arXiv:1011:2008Google Scholar
  8. 8.
    Léger J.C.: Menger curvature and rectifiability. Ann. Math. (2) 149(3), 831–869 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Lerman G., Whitehouse J.T.: High-dimensional Menger-type curvatures. II. d-separation and a menagerie of curvatures. Constr. Approx. 30(3), 325–360 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lerman G., Whitehouse J.T.: High-dimensional Menger-type curvatures. Part I: Geometric multipoles and multiscale inequalities. Rev. Mat. Iberoam. 27(2), 493–555 (2011)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Mattila, P.: Rectifiability, analytic capacity, and singular integrals. In: Proceedings of the International Congress of Mathematicians, vol. II (Berlin, 1998), number Extra vol. II, pp. 657–664 (electronic), 1998Google Scholar
  12. 12.
    Melnikov M.S.: Analytic capacity: a discrete approach and the curvature of measure. Mat. Sb. 186(6), 57–76 (1995)MathSciNetGoogle Scholar
  13. 13.
    Pajot, H.: Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral, vol. 1799 of Lecture Notes in Mathematics. Springer, Berlin (2002)Google Scholar
  14. 14.
    Strzelecki P., von der Mosel H.: On rectifiable curves with l p-bounds on global curvature: self-avoidance, regularity, and minimizing knots. Math. Z. 257(1), 107–130 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Strzelecki P., von der Mosel H.: Integral Menger curvature for surfaces. Adv. Math. 226(3), 2233–2304 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Strzelecki, P., von der Mosel, H.: Tangent-point repulsive potentials for a class of non-smooth m-dimensional sets in \({\mathbb{R}^n}\) . Part I: smoothing and self-avoidance effects. J. Geom. Anal. (2011). doi:10.1007/s12220-011-9275-z .
  17. 17.
    Strzelecki, P., von der Mosel, H.: Tangent-point self-avoidance energies for curves. J. Knot Theory Ramifications 21(5), 28 pp (2012)Google Scholar
  18. 18.
    Strzelecki P., Szumańska M., von der Mosel H.: A geometric curvature double integral of Menger type for space curves. Ann. Acad. Sci. Fenn. Math. 34(1), 195–214 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Strzelecki P., Szumańska M., von der Mosel H.: Regularizing and self-avoidance effects of integral Menger curvature. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 9(1), 145–187 (2010)MATHGoogle Scholar
  20. 20.
    Sullivan, J.M.: Approximating Ropelength by Energy Functions. AMS Contemporary Mathematics, Providence (2002)Google Scholar
  21. 21.
    Sutton, A.P., Balluffi, R.W.: Interfaces in Crystalline Materials. Monographs on the Physics and Chemistry of Materials. Oxford University Press, USA, 2 (1997)Google Scholar
  22. 22.
    Tolsa, X.: Analytic capacity, rectifiability, and the Cauchy integral. In: International Congress of Mathematicians, vol. II, pp. 1505–1527. European Mathematical Society, Zürich (2006)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland

Personalised recommendations