Advertisement

Manuscripta Mathematica

, Volume 140, Issue 1–2, pp 249–261 | Cite as

The J-invariant and Tits algebras for groups of inner type E 6

  • Caroline Junkins
Article

Abstract

A connection between the indices of the Tits algebras of a split linear algebraic group G and the degree one parameters of its motivic J-invariant was introduced by Quéguiner-Mathieu, Semenov and Zainoulline through use of the second Chern class map in the Riemann-Roch theorem without denominators. In this paper we extend their result to higher Chern class maps and provide applications to groups of inner type E 6.

Mathematics Subject Classification

20G15 14C25 14L30 14C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbaki, N.: Groupes et algèbres de Lie, Chap. 4, 5 et 6. Hermann, Paris (1968)Google Scholar
  2. 2.
    Demazure M: Désingularisation des variétés de Schubert généralisées. Ann. Sci. École Norm. Sup. 7(4), 53–88 (1974)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Fulton, W., Lang, S.: Riemann-Roch algebra. Grundlehren der Math. Wiss, vol. 277, x+203 pp. Springer, New York (1985)Google Scholar
  4. 4.
    Fulton, W.: Intersection Theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, xiv+470 pp. Springer, Berlin (1998)Google Scholar
  5. 5.
    Garibaldi, S., Semenov, N., Petrov, V.: Shells of twisted flag varieties and non-decomposibility of the Rost invariant. arXiv:1012.2451v2 (2011)Google Scholar
  6. 6.
    Garibaldi, S.: Zainoulline, K. The gamma-filtration and the Rost invariant. arXiv:1007.3482 (2010)Google Scholar
  7. 7.
    Grothendieck, A.: Torsion homologique et sections rationnelles in Anneaux de Chow et applications. Séminaire C. Chevalley; 2e année (1958)Google Scholar
  8. 8.
    Kac V.: Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups. Invent. Math. 80, 69–79 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Karpenko N.: Codimension 2 cycles on Severi–Brauer varieties. K-Theory 13(4), 305–330 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Karpenko N., Merkurjev A.: Canonical p-dimension of algebraic groups. Adv. Math. 205, 410–433 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Knus, M.-A., Merkurjev, A., Rost, M., Tignol, J.-P.: The Book of Involutions, vol. 44. AMS Colloquium Pub bf 44, Providence (1998)Google Scholar
  12. 12.
    Merkurjev A., Panin I., Wadsworth A.R.: Index reduction formulas for twisted flag varieties. I. K-Theory 10, 517–596 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Panin I.: On the algebraic K-theory of twisted flag varieties. K-Theory 8, 541–585 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Petrov V., Semenov N.: Generically split projective homogeneous varieties. Duke Math. J. 152, 155–173 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Petrov V., Semenov N., Zainoulline K.: J-invariant of linear algebraic groups. Ann Scient. Éc. Norm. Sup. 4e(série 41), 1023–1053 (2008)Google Scholar
  16. 16.
    Quéguiner-Mathieu, A., Semenov, N., Zainoulline, K.: The J-invariant and the Tits algebras of a linear algebraic group. Preprint arXiv:1104.1096. To appear in J. Pure Appl. Algebr. 27 (2011)Google Scholar
  17. 17.
    Semenov, N.: Higher Tits indices of algebraic groups (mit V. Petrov). Appendix von M. Florence. Preprint (2007)Google Scholar
  18. 18.
    SGA 6, Théorie des intersections et Théorème de Riemann-Roch, Lecture Notes in Mathematics, vol. 225. Springer, New York (1971)Google Scholar
  19. 19.
    Steinberg R.: On a theorem of Pittie. Topology 14, 173–177 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Tits J.: Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque. J. Reine Angew. Math. 247, 196–220 (1971)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematics & StatisticsUniversity of OttawaOttawaCanada

Personalised recommendations