Advertisement

Manuscripta Mathematica

, Volume 140, Issue 1–2, pp 13–28 | Cite as

Spectral analysis on \({{\rm SL}(2, \mathbb{R})}\)

  • Sanjoy Pusti
  • Rudra P. SarkarEmail author
Article
  • 185 Downloads

Abstract

Let G be the group \({{\rm SL}(2, \mathbb{R})}\). For this group we prove a version of Schwartz’s theorem on spectral analysis for the group G. We find the sharp range of Lebesgue spaces L p (G) for which a smooth function is not mean periodic unless it is a cusp form. Failure of the Schwartz-like theorem is also proved when C (G) is replaced by L p (G) with suitable p. We show that the last result is linked with the failure of the Wiener-tauberian theorem for G.

Mathematics Subject Classification (2000)

Primary 43A85 Secondary 22E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagchi S.C., Sitaram A.: Spherical mean periodic functions on semisimple Lie groups. Pac. J. Math. 84(2), 241–250 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barker, W.H.: L p harmonic analysis on \({{\rm SL}(2, \mathbb{R})}\). Mem. Am. Math. Soc. 76(393) (1988)Google Scholar
  3. 3.
    Ehrenpreis L., Mautner F.I.: Some properties of the Fourier transform on semi-simple Lie groups. I. Ann. Math. 2(61), 406–439 (1955)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ehrenpreis L., Mautner F.I.: Some properties of the Fourier transform on semi-simple Lie groups. II. Trans. Am. Math. Soc. 84, 1–55 (1957)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ehrenpreis L., Mautner F.I.: Some properties of the Fourier-transform on semisimple Lie groups. III. Trans. Am. Math. Soc. 90, 431–484 (1959)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Helgason, S.: Geometric Analysis on Symmetric Spaces. Mathematical Surveys and Monographs, 39. Am. Math. Soc., Providence, RI (1994)Google Scholar
  7. 7.
    Helgason S.: The Abel, Fourier and Radon transforms on symmetric spaces. Indag. Math. 16(3–4), 531–551 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Helgason, S., Sengupta, J.: Spectral analysis on rank one symmetric spaces. Preprint (1997)Google Scholar
  9. 9.
    Pusti S., Sarkar R.P.: Spectral analysis for radial sections of some homogeneous vector bundles on certain noncompact Riemannian symmetric spaces. Israel J. Math. 183, 475–507 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Sarkar R.P.: Wiener Tauberian theorems for \({{\rm SL}_{2}{(\mathbb{R})}}\). Pac. J. Math. 177(2), 291–304 (1997)CrossRefGoogle Scholar
  11. 11.
    Schwartz L.: Théorie générale des fonctions moyenne-périodiques. Ann. Math. 2(48), 857–929 (1947)CrossRefGoogle Scholar
  12. 12.
    Varadarajan, V.S.: An Introduction to Harmonic Analysis on Semisimple Lie Groups. Cambridge Studies in Advanced Mathematics (1999)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Stat–Math UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations