Advertisement

Manuscripta Mathematica

, Volume 139, Issue 3–4, pp 405–414 | Cite as

On a criterion of linear independence of p-adic numbers

  • Yu. V. Nesterenko
Article

Abstract

General theorems giving sufficient conditions for linear independence of p-adic numbers over algebraic number fields are proved.

Mathematics Subject Classification (2000)

11J72 11J82 11D88 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedulev, E.V.: On the linear independence of numbers over number fields. Mat. Zametki 64, 506–517 (1998) (English transl.: Mathematical Notes 64(4), 440–449 (1998))Google Scholar
  2. 2.
    Bundschuh P., Töpfer T.: . Monatsh. Math. 117(1–2), 17–32 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Nesterenko, Y.: On the linear independence of numbers. Vestn. Mosk. Univ. Ser. 1 40(1), 45–49 (1985) (English transl.: Mosk. Univ. Math. Bull. 40(1), 69–74)Google Scholar
  4. 4.
    Rivoal T.: La fonction Zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. C. R. Acad. Sci. Paris 331, 267–270 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Töpfer T.: Uber lineare Unabhangigkeit in algebraischen Zahlkorpern. Results Math. 25, 139–152 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Zhu, Y.C.: On the linear independence over a Number Field. Acta. Math. Sin. (I), 40(5), 713–716 (1997); (II), 48(1), 859–862 (2004)Google Scholar
  7. 7.
    Lang S.: Fundamentals of Diophantine Geometry. Springer, New York (1983)zbMATHGoogle Scholar
  8. 8.
    Fischler S., Zudilin W.: A refinement of Nesterenko’s linear independence criterion with applications to zeta values. Math. Ann. 347, 739–763 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bundschuh P., Väänänen K.: An application of Nesterenko’s dimension estimate to p-adic q-series. Int. J. Number Theory 7(2), 431–447 (2011)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations