Manuscripta Mathematica

, Volume 139, Issue 1–2, pp 237–248 | Cite as

Continuity of solutions to n-harmonic equations

Article

Abstract

In this paper, we study the nonhomogeneous n-harmonic equation
$$-{\rm div}\,(|{\nabla} u|^{n-2}{\nabla} u)=f$$
in domains \({\Omega\subset {\mathbb {R}^n}}\) (n ≥ 2), where \({f\in W^{-1,\frac{n}{n-1}}(\Omega)}\). We derive a sharp condition to guarantee the continuity of solutions u. In particular, we show that when n ≥ 3, the condition that, for some \({\epsilon >0 ,}\) f belongs to
$${\mathfrak{L}}({\rm log}\,{\mathfrak{L}})^{n-1}({\rm log}\,{\rm log}\,{\mathfrak{L}})^{n-2}\cdots({\rm log}\cdots{\rm log}\,{\mathfrak{L}})^{n-2}({\rm log}\cdots{\rm log}\,{\mathfrak{L}})^{n-2+\epsilon}(\Omega)$$
is sufficient for continuity of u, but not for \({\epsilon=0}\).

Mathematics Subject Classification (2010)

Primary 35J60 Secondary 31B35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett C., Sharpley R.: Interpolation of Operators. Pure and Applied Mathematics, Vol. 129. Academic Press, New York (1988)Google Scholar
  2. 2.
    Cianchi A.: Nonlinear potentials, local solutions to elliptic equations and rearrangements. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10, 335–361 (2011)MathSciNetMATHGoogle Scholar
  3. 3.
    Cianchi A., Kerman R., Opic B., Pick L.: A sharp rearrangement inequality for the fractional maximal operator. Stud. Math. 138, 277–284 (2000)MathSciNetMATHGoogle Scholar
  4. 4.
    D’Onofrio, L., Iwaniec, T.: Notes on p-harmonic analysis. In: The p-harmonic equation and Recent Advances in Analysis, Contemporary Mathematics, vol. 370, pp. 25–49, American Mathematical Society, Providence (2005)Google Scholar
  5. 5.
    Firoozye N.B.: n-Laplacian in \({\fancyscript{H}^1_{\rm loc}}\) does not lead to regularity. Proc. Am. Math. Soc. 123, 3357–3360 (1995)MathSciNetMATHGoogle Scholar
  6. 6.
    Grafakos L.: Classical Fourier Analysis. Second Edition, Graduate Texts in Mathematics, Vol. 249. Springer, New York (2008)Google Scholar
  7. 7.
    Iwaniec T., Onninen J.: Continuity estimates for n-harmonic equations. Indiana Univ. Math. J. 56, 805–824 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kauhanen J., Koskela P., Malý J.: On functions with derivatives in a Lorentz space. Manuscr. Math. 100, 87–101 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Kilpeläinen T., Li G.: Estimates for p-Poisson equations. Differ. Integral Equ. 13, 791–800 (2000)MATHGoogle Scholar
  10. 10.
    Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Lindqvist, P.: Notes on the p-Laplace equation. Report, 102. University of Jyväskylä Department of Mathematics and Statistics. University of Jyväskylä, Jyväskylä (2006)Google Scholar
  12. 12.
    Mingione G.: The Calderón–Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, 195–261 (2007)MathSciNetMATHGoogle Scholar
  13. 13.
    Mingione G.: Gradient estimates below the duality exponent. Math. Ann. 346, 571–627 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Stein E.M.: Editor’s note: the differentiability of functions in \({{\mathbb {R}^n}}\). Ann. Math. (2) 113, 383–385 (2010)Google Scholar
  15. 15.
    Stein E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)MATHGoogle Scholar
  16. 16.
    Zhong X.: On nonhomogeneous quasilinear elliptic equations. Ann. Acad. Sci. Fenn. Math. Disscuss. 117, 46 (1998)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of EducationBeijingPeople’s Republic of China
  2. 2.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations