Manuscripta Mathematica

, Volume 135, Issue 1–2, pp 229–243 | Cite as

The space of left-invariant metrics on a Lie group up to isometry and scaling

  • Hiroshi Kodama
  • Atsushi Takahara
  • Hiroshi TamaruEmail author


We study the spaces of left-invariant Riemannian metrics on a Lie group up to isometry, and up to isometry and scaling. In this paper, we see that such spaces can be identified with the orbit spaces of certain isometric actions on noncompact symmetric spaces. We also study some Lie groups whose spaces of left-invariant metrics up to isometry and scaling are small.

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berndt J., Console S., Olmos C.: Submanifolds and Holonomy. Chapman & Hall/CRC Research Notes in Mathematics, vol. 434. Chapman & Hall/CRC, Boca Raton, FL (2003)Google Scholar
  2. 2.
    Berndt J., Tamaru H.: Homogeneous codimension one foliations on noncompact symmetric spaces. J. Differ. Geom. 63(1), 1–40 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Besse A.: Einstein manifolds. Ergeb. Math. vol. 10. Springer, Berlin-Heidelberg (1987)Google Scholar
  4. 4.
    Chow B., Knopf D.: The Ricci Flow: An Introduction. Mathematical Surveys and Monographs, vol. 110. American Mathematical Society, Providence, RI (2004)Google Scholar
  5. 5.
    Ha K.Y., Lee J.B.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282(6), 868–898 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Helgason S.: Differential geometry, Lie groups, and symmetric spaces. Graduate Studies in Mathematics 34. American Mathematical Society, Providence, RI (2001)Google Scholar
  7. 7.
    Knapp, A.W.: Lie Groups Beyond an Introduction, 2nd edn. Progress in Mathematics, vol. 140. Birkhauser Boston, Inc., Boston, MAGoogle Scholar
  8. 8.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Reprint of the 1969 original. Wiley Classics Library, A Wiley-Interscience Publication. Wiley Inc., New York (1996)Google Scholar
  9. 9.
    Lauret J.: Degenerations of Lie algebras and geometry of Lie groups. Differ. Geom. Appl. 18(2), 177–194 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lauret, J.: Einstein Solvmanifolds and Nilsolitons. New Developments in Lie Theory and Geometry. Contemporary Mathematics, vol. 491, pp. 1–35. American Mathematical Society, Providence, RI (2009)Google Scholar
  11. 11.
    Milnor J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Palais, R.S., Terng, C.-L.: Critical Point Theory and Submanifold Geometry. Lecture Notes in Mathematics, vol. 1353. Springer, Berlin (1988)Google Scholar
  13. 13.
    Tamaru H.: Noncompact homogeneous Einstein manifolds attached to graded Lie algebras. Math. Z. 259(1), 171–186 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Tamaru, H.: A class of noncompact homogeneous Einstein manifolds. In: Differential Geometry and Its Applications, pp. 119–127. Matfyzpress, Prague (2005)Google Scholar
  15. 15.
    Tamaru, H.: Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds. Math. Ann., to appear. Preprint at arXiv:0711.1022Google Scholar
  16. 16.
    Wilson E.: Isometry groups on homogeneous nilmanifolds. Geom. Dedicata 12, 337–346 (1982)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hiroshi Kodama
    • 1
    • 2
  • Atsushi Takahara
    • 1
    • 3
  • Hiroshi Tamaru
    • 1
    Email author
  1. 1.Department of MathematicsHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.System Be-Alpha Inc.FukuokaJapan
  3. 3.Saga Technical High SchoolSagaJapan

Personalised recommendations