Advertisement

manuscripta mathematica

, Volume 133, Issue 3–4, pp 409–464 | Cite as

Calculation of -adic local Fourier transformations

Article

Abstract

We calculate the local Fourier transformations for a class of \({\overline{\mathbb Q}_\ell}\)-sheaves. In particular, we verify a conjecture of Laumon and Malgrange [18, 2.6.3]. As an application, we calculate the local monodromy of -adic hypergeometric sheaves introduced by Katz [15]. We also discuss the characteristic p analogue of the Turrittin-Levelt Theorem for D-modules.

Mathematics Subject Classification (2000)

14F20 14G15 11L05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbes, A., Saito, T.: Local Fourier transform and epsilon factors, arXiv: math/0809.0180 (2008)Google Scholar
  2. 2.
    Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (1989)Google Scholar
  3. 3.
    Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Mathematics, 269, 270, 305. Springer-Verlag, New York (1972–1973)Google Scholar
  4. 4.
    Copson E.T.: Asymptotic Expansions. Cambridge University Press, Cambridge (1965)zbMATHCrossRefGoogle Scholar
  5. 5.
    Deligne, P., et al.: Cohomologie étale (SGA \({4\frac{1}{2} }\)). Lecture Notes in Mathematics, 569. Springer-Verlag, New York (1977)Google Scholar
  6. 6.
    Deligne, P.: Letters to the author, April 29 and May 6, 2008Google Scholar
  7. 7.
    Deligne P.: La conjecture de Weil II. Publ. Math. IHES 52, 137–252 (1980)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Fang, J.: Calculation of local Fourier transforms for formal connections, arXiv: math/0707.0090 (2007)Google Scholar
  9. 9.
    Fu L., Wan D.: L-functions for symmetric products of Kloosterman sums. J. Reine Angew. Math. 589, 79–103 (2005)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Grothendieck, A.: Revêtements Étales et Groupe Fondamental (SGA 1). Lecture Notes in Mathematics, 224. Springer-Verlag, New York (1971)Google Scholar
  11. 11.
    Grothendieck, A., Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique (SGA 7). Lecture Notes in Mathematics, 228, 340, Springer-Verlag, New York (1972–1973)Google Scholar
  12. 12.
    Grothendieck, A., Dieudonné, D.: Étude globale élémentaire de quelques classes de morphismes (EGA II). Publ. Math. IHES 8 (1961)Google Scholar
  13. 13.
    Grothendieck, A., Dieudonné, D.: Étude cohomologique des faisceaux cohérents (EGA III). Publ. Math. IHES 11 (1961), 17 (1963)Google Scholar
  14. 14.
    Grothendieck, A., Dieudonné, D.: Étude locale des schémas et des morphismes de schémas (EGA IV). Publ. Math. IHES 20 (1964), 24 (1965), 28 (1966), 32 (1967)Google Scholar
  15. 15.
    Katz N.: Exponential sums and differential equations. Annals of Mathematics Studies, 124. Princeton University Press, Princeton (1990)Google Scholar
  16. 16.
    Katz N.: Exponential sums over finite fields and differential equations over the complex numbers: some interactions. Bull. Am. Math. Soc. 23, 269–309 (1990)zbMATHCrossRefGoogle Scholar
  17. 17.
    Katz N.: Gauss sums, Kloosterman sums, and monodromy groups. Annals of Mathematics Studies, 116. Princeton University Press, Princeton (1988)Google Scholar
  18. 18.
    Laumon G.: Transformation de Fourier, constantes d’équations fontionnelles, et conjecture de Weil. Publ. Math. IHES 65, 131–210 (1987)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Ramero L.: On a class of étale analytic sheaves. J. Alg. Geo. 7, 405–504 (1998)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Sabbah, C.: An explicit stationary phase formula for the local formal Fourier-Laplace transform, Singularities I, 309–330, Contemp. Math., 474. American Mathematical Society, Providence, RI (2008)Google Scholar
  21. 21.
    Serre J.-P.: Linear representations of finite groups. Springer-Verlag, New York (1977)zbMATHGoogle Scholar
  22. 22.
    Serre J.-P., Tate J.: Good reduction of abelian varieties. Ann. Math. 88, 492–517 (1968)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Chern Institute of Mathematics and LPMCNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations