manuscripta mathematica

, Volume 131, Issue 3–4, pp 537–546 | Cite as

On p-harmonic maps and convex functions

Article

Abstract

We prove that, in general, given a p-harmonic map F : MN and a convex function \({H : N \rightarrow \mathbb{R}}\), the composition \({H\circ F}\) is not p-subharmonic, if p ≠ 2. This answers in the negative an open question arisen from a paper by Lin and Wei. By assuming some rotational symmetry on manifolds and functions, we reduce the problem to an ordinary differential inequality. The key of the proof is an asymptotic estimate for the p-harmonic map under suitable assumptions on the manifolds.

Mathematics Subject Classification (2000)

Primary 58E20 Secondary 53C43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheung L.-F., Law C.-K., Leung M.-C., McLeod J.B.: Entire solutions of quasilinear differential equations corresponding to p-harmonic maps. Nonlinear Anal. 31(5–6), 701–715 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cheung L.-F., Leung P.-F.: A remark on convex functions and p-harmonic maps. Geom. Dedicata 56, 269–270 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ishihara T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19, 215–229 (1979)MATHMathSciNetGoogle Scholar
  4. 4.
    Leung M.-C.: Positive solutions of second order quasilinear equations corresponding to p-harmonic maps. Nonlinear Anal. 31(5–6), 717–733 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lin, E.-B., Wei, S.W.: Some open problems in geometry. In: Proceedings of the Midwest Geometry Conference. Commun. Math. Anal., Conf. 1, 35–38 (2008)Google Scholar
  6. 6.
    Loubeau E.: p-harmonic morphisms. Differ. Geom. Appl. 12, 219–229 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kawai S.: p-harmonic maps and convex functions. Geom. Dedicata 74, 261–265 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    O’Neill B.: Semi-Riemannian Geometry with Application to Relativity. Academic Press, New York (1982)Google Scholar
  9. 9.
    Pigola S., Rigoli M., Setti A.G.: Constancy of p-harmonic maps of finite q-energy into non-positively curved manifolds. Math. Z. 258(2), 347–362 (2008)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Schoen, R., Yau, S.T.: Lectures on Harmonic Maps. Lectures Notes in Geometry and Topology, vol. II, International Press, Cambridge (1994)Google Scholar
  11. 11.
    Wei, S.W.: The minima of the p-energy functional. Elliptic and parabolic methods in geometry (Minneapolis 1994), pp. 171–203. A K Peters, Wellesley (1996)Google Scholar
  12. 12.
    Wei S.W.: Representing homotopy groups and spaces of maps by p-harmonic maps. Indiana Univ. Math. J. 47, 625–670 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wei S.W., Li J.F., Wu L.: Convex functions are psubharmonic functions, p > 1 on \({\mathbb{R}^n}\). Glob. J. Pure Appl. Math. 3(3), 219–225 (2007)Google Scholar
  14. 14.
    Wei, S.W., Li, J.F., Wu, L.: Generalizations of the uniformization theorem and Bochner’s method in p-harmonic geometry. In: Proceedings of the Midwest Geometry Conference. Commun. Math. Anal., Conf. 1, 46–68 (2008)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations