Advertisement

manuscripta mathematica

, 131:1 | Cite as

Koszul duality for stratified algebras I. Balanced quasi-hereditary algebras

  • Volodymyr Mazorchuk
Article

Abstract

We give a complete picture of the interaction between Koszul and Ringel dualities for quasi-hereditary algebras admitting linear tilting (co)resolutions of standard and costandard modules. We show that such algebras are Koszul, that the class of these algebras is closed with respect to both dualities and that on this class these two dualities commute. All arguments reduce to short computations in the bounded derived category of graded modules.

Mathematics Subject Classification (2000)

Primary 16S37 Secondary 16E30 

References

  1. 1.
    Ágoston I., Dlab V., Lukács E.: Stratified algebras. C. R. Math. Acad. Sci. Soc. R. Can. 20(1), 22–28 (1998)MATHMathSciNetGoogle Scholar
  2. 2.
    Ágoston I., Dlab V., Lukács E.: Quasi-hereditary extension algebras. Algebr. Represent. Theory 6(1), 97–117 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beilinson A., Ginzburg V., Soergel W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9(2), 473–527 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chuang J., Turner W.: Cubist algebras. Adv. Math. 17(4), 1614–1670 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cline, E., Parshall, B., Scott, L.: Stratifying endomorphism algebras. Mem. Am. Math. Soc. 124(591) (1996)Google Scholar
  6. 6.
    Dlab, V., Ringel, C.: The module theoretical approach to quasi-hereditary algebras. Representations of algebras and related topics (Kyoto, 1990), 200–224. London Mathematical Society Lecture Note Series, vol. 168. Cambridge University Press, Cambridge (1992)Google Scholar
  7. 7.
    Happel D.: Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, vol. 119. Cambridge University Press, Cambridge (1988)Google Scholar
  8. 8.
    Mazorchuk, V.: Applications of the category of linear complexes of tilting modules associated with the category \({\mathcal{O}}\), preprint arXiv:math/0501220, to appear in Alg. Rep. TheoryGoogle Scholar
  9. 9.
    Mazorchuk, V.: Koszul duality for stratified algebras II. Standardly stratified algebras, preprint arXiv:0812.4120Google Scholar
  10. 10.
    Mazorchuk V., Ovsienko S.: A pairing in homology and the category of linear complexes of tilting modules for a quasi-hereditary algebra. With an appendix by Catharina Stroppel. J. Math. Kyoto Univ. 45(4), 711–741 (2005)MATHMathSciNetGoogle Scholar
  11. 11.
    Mazorchuk V., Ovsienko S., Stroppel C.: Quadratic duals, Koszul dual functors, and applications. Trans. Am. Math. Soc. 361(3), 1129–1172 (2009)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Priddy S.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ringel C.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208(2), 209–223 (1991)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations