Advertisement

manuscripta mathematica

, Volume 129, Issue 4, pp 437–448 | Cite as

Representation theorem for locally defined operators in the space of Whitney differentiable functions

  • Janusz MatkowskiEmail author
  • Małgorzata Wróbel
Article

Abstract

Under the assumption that \({A\subset\mathbb{R}^{n}}\) is perfect, a representation theorem for locally defined operators mapping the space C m (A) of Whitney differentiable functions into C 1(A) is given and an open problem is presented.

Mathematics Subject Classification (2000)

Primary 47H30 Secondary 34A34 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appell J., Zabreiko P.P.: Continuity properties of the superposition operators. J. Aust. Math. Soc. Ser. A 47(2), 186–210 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Appell J., Zabreiko P.P.: Nonlinear Superposition operators. Cambridge University Press, Cambridge-Port Chester-Melbourne-Sydney (1990)zbMATHGoogle Scholar
  3. 3.
    Karták K.: A generalization of the Carathéodory theory of differential equations. Czechoslov. Math. J. 17, 482–514 (1967)Google Scholar
  4. 4.
    Karták K.: On Carathéodory operators. Czechoslov. Math. J. 17, 515–519 (1967)Google Scholar
  5. 5.
    Kozłowski W.: Nonlinear operators in function Banach spaces. Comm. Math. Prace Mat. 22, 85–103 (1980)zbMATHGoogle Scholar
  6. 6.
    Lichawski K., Matkowski J., Mis J.: Locally defined operators in the space of differentiable functions. Bull. Polish Acad. Sci. Math. 37, 315–325 (1989)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Malgrange B.: Ideals of Differentiable Functions. Oxford University Press, New York (1966)zbMATHGoogle Scholar
  8. 8.
    Matkowski J., Wróbel M.: Locally defined operators in the space of Whitney differentiable functions. Nonlinear Anal. 68, 2933–2942 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Randranaja R.: Sur les h-opérateurs. C. R. Acad. Sci. Paris 306, 667–669 (1988)Google Scholar
  10. 10.
    Shragin I.V.: Abstract Nemytskij operators are locally defined operators (Russian). Doklady Akad. Nauk SSSR 227(1), 47–49 (1976)Google Scholar
  11. 11.
    Shragin I.V.: On representation of a locally defined operator in the form of the Nemytskii operator. Func. Differ. Equ. 3, 447–452 (1996)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Vrkoč I.: The representation of Carathéodory operators. Czechoslov. Math. J. 19, 99–109 (1969)Google Scholar
  13. 13.
    Whitney H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36, 63–89 (1934)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Yamamuro S.: On the theory of some nonlinear operators. Yokohama Math. J. 10, 11–17 (1962)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of Mathematics, Computer Science and EconometricsUniversity of Zielona GóraZielona GóraPoland
  2. 2.Institute of MathematicsSilesian UniversityKatowicePoland
  3. 3.Institute of Mathematics and InformaticsJan Długosz UniversityCzęstochowaPoland

Personalised recommendations