Advertisement

manuscripta mathematica

, Volume 130, Issue 1, pp 93–100 | Cite as

Transformations of locally conformally Kähler manifolds

  • Andrei Moroianu
  • Liviu Ornea
Article

Abstract

We consider several transformation groups of a locally conformally Kähler manifold and discuss their inter-relations. Among other results, we prove that all conformal vector fields on a compact Vaisman manifold which is neither locally conformally hyperkähler nor a diagonal Hopf manifold are Killing, holomorphic and that all affine vector fields with respect to the minimal Weyl connection of a locally conformally Kähler manifold which is neither Weyl-reducible nor locally conformally hyperkähler are holomorphic and conformal.

Mathematics Subject Classification (2000)

Primary 53C15 53C25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belgun F.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Belgun, F., Moroianu, A.: Weyl-Parallel Forms and Conformal Products. arXiv: 0901.3647Google Scholar
  3. 3.
    Dragomir, S., Ornea, L.: Locally conformal Kähler geometry. Prog. Math. 155. Birkhäuser (1998)Google Scholar
  4. 4.
    Gallot S.: Equations différentielles caractéristiques de la sphère. Ann. Sci. Ec. Norm. Sup. 12, 235–267 (1979)MathSciNetGoogle Scholar
  5. 5.
    Gauduchon P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gauduchon P.: Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S 1 × S 3. J. Reine Angew. Math. 469, 1–50 (1995)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Kobayashi S., Nomizu K.: On automorphisms of a Kählerian structure. Nagoya Math. J. 11, 115–124 (1957)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Lichnérowicz, A.: Géométrie des Groupes de Transformations. Dunod, Paris (1958)Google Scholar
  9. 9.
    Moroianu A., Semmelmann U.: Twistor forms on Riemannian products. J. Geom. Phys. 58, 1343–1345 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ornea L., Verbitsky M.: Structure Theorem for compact Vaisman manifolds. Math. Res. Lett. 10, 799–805 (2003)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Centre de MathémathiquesEcole PolytechniquePalaiseau CedexFrance
  2. 2.Faculty of MathematicsUniversity of BucharestBucharestRomania
  3. 3.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations