manuscripta mathematica

, Volume 129, Issue 4, pp 409–421

Invariants of simple algebras

Open Access


We determine the group of invariants with values in Galois cohomology with coefficients \({\mathbb{Z}/2\mathbb{Z}}\) of central simple algebras of degree at most 8 and exponent dividing 2.

Mathematics Subject Classification (2000)

Primary 16K20 Secondary 12G05 


  1. 1.
    Amitsur S.A., Rowen L.H., Tignol J.-P.: Division algebras of degree 4 and 8 with involution. Israel J. Math. 33(2), 133–148 (1979)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arason J.Kr.: Cohomologische invarianten quadratischer formen. J. Algebra 36(3), 448–491 (1975)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berhuy G., Favi G.: Essential dimension: a functorial point of view (after A Merkurjev). Doc. Math. 8, 279–330 (2003) (electronic)MATHMathSciNetGoogle Scholar
  4. 4.
    Dherte H.: Quadratic descent of involutions in degree 2 and 4. Proc. Am. Math. Soc. 123(7), 1963–1969 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Draxl P.K.: Skew Fields, London Mathematical Society Lecture Note Series, vol. 81. Cambridge University Press, Cambridge (1983)Google Scholar
  6. 6.
    Elman, R., Karpenko, N., Merkurjev, A.: The Algebraic and Geometric Theory of Quadratic Forms. American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence (2008)Google Scholar
  7. 7.
    Garibaldi R., Merkurjev A., Serre J.-P.: Cohomological Invariants in Galois Cohomology. American Mathematical Society, Providence (2003)MATHGoogle Scholar
  8. 8.
    Herstein, I.N.: Noncommutative Rings. Carus Mathematical Monographs, vol. 15. Mathematical Association of America, Washington, DC (1994) (Reprint of the 1968 original, With an afterword by L.W. Small)Google Scholar
  9. 9.
    Kahn B.: Comparison of some field invariants. J. Algebra 232(2), 485–492 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kanzaki T.: Note on quaternion algebras over a commutative ring. Osaka J. Math. 13(3), 503–512 (1976)MATHMathSciNetGoogle Scholar
  11. 11.
    Knus, M.-A., Merkurjev, A., Rost, M., Tignol, J.-P.: The Book of Involutions. American Mathematical Society, Providence (1998) (with a preface in French by J. Tits)Google Scholar
  12. 12.
    Lam T.Y., Leep D.B., Tignol J.-P.: Biquaternion algebras and quartic extensions. Inst. Hautes Études Sci. Publ. Math. 77, 63–102 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lorenz M., Reichstein Z., Rowen L.H., Saltman D.J.: Fields of definition for division algebras. J. Lond. Math. Soc. (2) 68(3), 651–670 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reichstein Z., Youssin B.: Essential dimensions of algebraic groups and a resolution theorem for G-varieties. Can. J. Math. 52(5), 1018–1056 (2000) (with an appendix by J. Kollár and E. Szabó)MATHMathSciNetGoogle Scholar
  15. 15.
    Rost M.: Chow groups with coefficients. Doc. Math. 1(16), 319–393 (1996) (electronic)MATHMathSciNetGoogle Scholar
  16. 16.
    Rowen L.: Central simple algebras. Israel J. Math. 29(2–3), 285–301 (1978)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Saltman D.J.: Lectures on Division Algebras, CBMS Regional Conference Series in Mathematics, vol. 94. American Mathematical Society, Providence (1999)Google Scholar
  18. 18.
    Tignol J.-P.: Sur les classes de similitude de corps à involution de degré 8. C. R. Acad. Sci. Paris Sér. A-B 286(20), A875–A876 (1978)MathSciNetGoogle Scholar
  19. 19.
    Vial, C.: Operations in milnor k-theory. (2008)

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations