manuscripta mathematica

, Volume 127, Issue 2, pp 187–217 | Cite as

Local Shalika models and functoriality

  • Dihua JiangEmail author
  • Chufeng Nien
  • Yujun Qin


We prove, over a p-adic local field F, that an irreducible supercuspidal representation of GL2n (F) is a local Langlands functorial transfer from SO2n+1(F) if and only if it has a nonzero Shalika model (Corollary 5.2, Proposition 5.4 and Theorem 5.5). Based on this, we verify (Sect. 6) in our cases a conjecture of Jacquet and Martin, a conjecture of Kim, and a conjecture of Speh in the theory of automorphic forms.

Mathematics Subject Classification (2000)

Primary 11F70 22E50 Secondary 11F85 22E55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arthur, J., Clozel, L.: Simple algebras, base change, and the advanced theory of the trace formula. Annals of Mathematics Studies, vol. 120. Princeton University Press, Princeton (1989)Google Scholar
  2. 2.
    Badulescu, A.: Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations (with an appendix by Grbac, N.). Invent. Math. 172(2), 383–438 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernstein I.N., Zelevinski A.V.: Representations of GL(n, F), where F is a non-archimedean local field. Russ. Math. Surv. 31(3), 1–68 (1976)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bump, Daniel; Friedberg: Solomon The exterior square automorphic L-functions on GL(n). Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), pp. 47–65. In: Israel Math. Conf. Proc., 3, Weizmann, Jerusalem (1990)Google Scholar
  5. 5.
    Chenevier, C., Clozel, L.: Corps de nombres peu ramifiés et formes automorphes autoduales (preprint) (2007)Google Scholar
  6. 6.
    Cogdell J., Kim H., Piatetski-Shapiro I., Shahidi F.: Functoriality for classical groups. Publ. Math. IHES 99, 163–233 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Friedberg S., Jacquet H.: Linear periods. J. Reine Angew. Math. 443, 91–139 (1993)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Gan, W., Takeda, S.: On Shalika Periods and a Conjecture of Jacquet–Martin. arXiv:0705.1576Google Scholar
  9. 9.
    Gelfand, S.I.: Kazhdan, D. Representations of the group GL(n, K), where K is a local field, pp. 95–118. Lie groups and their representations, New York (1975)Google Scholar
  10. 10.
    Gelbart, S., Piatetski-Shapiro, I., Rallis, S.: Explicit constructions of automorphic L-functions. Lecture notes in mathematics 1254, Springer (1987)Google Scholar
  11. 11.
    Ginzburg D., Piatetski-Shapiro I., Rallis S.: L functions for the orthogonal group. Mem. Am. Math. Soc. 128(611), viii+218 (1997)MathSciNetGoogle Scholar
  12. 12.
    Ginzburg D., Rallis S., Soudry D.: On explicit lifts of cusp forms from GLm to classical groups. Ann. Math (2) 150(3), 807–866 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ginzburg D., Rallis S., Soudry D.: Generic automorphic forms on SO(2n + 1): functorial lift to GL(2n), endoscopy, and base change. Int. Math. Res. Not. 14, 729–764 (2001)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Heumos M.J., Rallis S.: Symplectic-Whittaker models for GLn. Pac. J. Math. 146(2), 247–279 (1990)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties. With an appendix by Vladimir G. Berkovich. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001)Google Scholar
  16. 16.
    Henniart G.: Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. (French) (A simple proof of the Langlands conjectures for GL(n) over a p-adic field). Invent. Math. 139(2), 439–455 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jacquet H., Piatetski-Shapiro I., Shalika J.: A Rankin–Selberg convolutions. Am. J. Math. 105(2), 367–464 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jacquet H., Rallis S.: Symplectic periods. J. Reine Angew. Math. 423, 175–197 (1992)MathSciNetGoogle Scholar
  19. 19.
    Jacquet H., Rallis S.: Kloosterman integrals for skew symmetric matrices. Pac. J. Math. 154(2), 265–283 (1992)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Jacquet H., Rallis S.: Uniqueness of linear periods. Compos. Math. 102(1), 65–123 (1996)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Jacquet H., Shalika J.: On Euler products and the classification of automorphic forms. II. Am. J. Math. 103(4), 777–815 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Jacquet, H., Shalika, J.: Exterior square L-functions. Automorphic forms, Shimura varieties, and L-functions, vol. II. (Ann Arbor, MI, 1988), pp. 143–226. Perspect. Math., 11, Academic Press, Boston (1990)Google Scholar
  23. 23.
    Jiang D.: On the fundamental automorphic L-functions of SO(2n + 1). Int. Math. Res. Not. 64069, 1–26 (2006)CrossRefGoogle Scholar
  24. 24.
    Jiang, D.: A letter to H. Jacquet (2007)Google Scholar
  25. 25.
    Jiang, D., Qin Y.: Residues of Eisenstein series and generalized Shalika models for SO(4n). J. Ramanujan Math. Soc. (to appear) (2007)Google Scholar
  26. 26.
    Jiang D., Soudry D.: The local converse theorem for SO(2n + 1) and applications. Ann. Math. 157, 743–806 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Jiang, D., Soudry, D.: Generic representations and the local langlands reciprocity law for p-adic SO(2n + 1). Contributions to automorphic forms, geometry, and number theory, pp. 457–519. Johns Hopkins Univ. Press, Baltimore (2004)Google Scholar
  28. 28.
    Khare C., Larsen M., Savin G.: Functoriality and the Inverse Galois Problem. Compos. Math. 144, 541–564 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kim H.: Residual spectrum of odd orthogonal groups. Int. Math. Res. Not. 17, 873–906 (2001)CrossRefGoogle Scholar
  30. 30.
    Johan A.C., Johan A.C., Varadarajan V.S.: On the transverse symbol of vectorial distributions and some applications to harmonic analysis. Indag. Math. (NS) 7(1), 67–96 (1996)zbMATHCrossRefGoogle Scholar
  31. 31.
    Kutzko, P., Morris, L.: Level zero Hecke algebras and parabolic induction: the Siegel case for split classical groups. Int. Math. Res. Not., Art. ID 97957, p. 40 (2006)Google Scholar
  32. 32.
    Martin, K.: Transfer from GL 2(D) and GSp4. In: Proceedings of the 9th Autumn Workshop on Number Theory, Hakuba (2006)Google Scholar
  33. 33.
    Moeglin C., Waldspurger J.-L.: Modéles de Whittaker dégénérés pour des groupes p-adiques. (French) (Degenerate Whittaker models for p-adic groups) . Math. Z. 196(3), 427–452 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Moeglin, C., Waldspurger, J.-L.: Spectral decomposition and Eisenstein series. Cambridge Tracts in Mathematics, vol. 113. Cambridge University Press, Cambridge (1995)Google Scholar
  35. 35.
    Nien, C.: Klyachko models for general linear groups of rank 5 over a p-adic field. Can. J. Math. (accepted) (2008)Google Scholar
  36. 36.
    Nien, C.: Uniqueness of Shalika models. Can. J. Mat. (accepted) (2008)Google Scholar
  37. 37.
    Prasad D., Raghuram A.: Kirillov theory of GL 2(D) where D is a division algebra over a non-Archimedean local field. Duke J. Math. 104(1), 19–44 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Prasad D., Schulze-Pillot R.: Generalised form of a conjecture of Jacquet and a local consequence. J. Reine Angew. Math. 616, 219–236 (2008)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Savin G.: Lifting of generic depth zero representations of classical groups. J. Algebra 319, 3244–3258 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Shalika J.A.: The multiplicity one theorem for GLn. Ann. Math. (2) 100, 171–193 (1974)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Shahidi F.: A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups. Ann. Math. 132, 273–330 (1990)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Shahidi F.: Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math. J. 66(1), 1–41 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Soudry, D.: A uniqueness theorem for representations of GSO(6) and the strong multiplicity one theorem for generic representations of GSp(4). Isr. J. Math. 58(3) (1987)Google Scholar
  44. 44.
    Soudry D.: On Langlands functoriality from classical groups to GLn. Automorphic Forms. I. Astérisque 298, 335–390 (2005)MathSciNetGoogle Scholar
  45. 45.
    Speh, B.: Conversation with Dihua Jiang (1995)Google Scholar
  46. 46.
    Warner G.: Harmonic Analysis on Semisimple Lie groups I, II. Springer, New York (1972)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsNational Cheng Kung UniversityTainanTaiwan
  3. 3.Department of MathematicsEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations