Advertisement

manuscripta mathematica

, Volume 126, Issue 4, pp 443–464 | Cite as

Principal parts on the projective line over arbitrary rings

  • Helge MaakestadEmail author
Article

Abstract

We develop techniques to split explicitly the sheaf of principal parts \({\mathcal P^k(\mathcal O(n))}\) as left and right module on the projective line over an arbitrary ring. We then apply the techniques developed to split the principal parts \({\mathcal P^k(\mathcal O(n))}\) for all \({n\,\in {\bf Z}}\) and k ≥ 1 as left and right \({\mathcal O}\)-module on the projective line over any field of characteristic zero giving a complete description of the principal parts on the projective line.

Mathematics Subject Classification (2000)

14M15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grothendieck, A.: Éléments de géométrie algébrique IV4, Étude locale des schémas et des morphismes de schémas. Publ. Math. IHES 32, (1967)Google Scholar
  2. 2.
    Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math. 79, (1957)Google Scholar
  3. 3.
    Harder, G.: Halbeinfache Gruppenscemata über vollständigen Kurven. Invent. Math. 6, (1968)Google Scholar
  4. 4.
    Maakestad, H.: Modules of principal parts on the projective line. Arkiv för Matematik 42(2), (2004)Google Scholar
  5. 5.
    Maakestad, H.: A note on principal parts on projective space and linear representations. Proc. Am. Math. Soc. 133(2), (2005)Google Scholar
  6. 6.
    Laksov, D., Thorup, A.: Weierstrass points on schemes. J. Reine Angew. Math. 460, (1995)Google Scholar
  7. 7.
    Perkinson, D.: Curves in grassmannians. Trans. AMS 347, (1995)Google Scholar
  8. 8.
    Piene, R., Sacchiero, G.: Duality for rational normal scrolls. Commun. Algebra 12, (1984)Google Scholar
  9. 9.
    Piene, R.: Numerical characters of a curve in projective n-space, Real and complex singularities. In: Proceedings of Ninth Nordic Summer School Oslo (1976)Google Scholar
  10. 10.
    di Rocco, S., Sommese, A.J.: Line bundles for which a projectivized jet bundle is a product. Proc. Amer. Math. Soc. 129, (2001)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsKTHStockholmSweden

Personalised recommendations