manuscripta mathematica

, Volume 125, Issue 4, pp 427–470 | Cite as

Denominators of Eisenstein cohomology classes for GL2 over imaginary quadratic fields

Article

Abstract

We study the arithmetic of Eisenstein cohomology classes for symmetric spaces associated to GL2 over imaginary quadratic fields. We prove in many cases a lower bound on their denominator in terms of an L-value of a Hecke character providing evidence for a conjecture of Harder that the denominator is given by this L-value. Furthermore, we exibit conditions under which the restriction of the classes to the boundary is integral.

Mathematics Subject Classification (2000)

11F75 11F67 22E41 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold T. (2007). Anticyclotomic main conjectures for CM modular forms. J. Reine Angew. Math. 606: 41–78 MATHMathSciNetGoogle Scholar
  2. 2.
    Berger, T.: An Eisenstein ideal for imaginary quadratic fields, Ph.D. thesis, University of Michigan, Ann Arbor (2005)Google Scholar
  3. 3.
    Berger, T.: An Eisenstein ideal for imaginary quadratic fields and the Bloch–Kato conjecture for Hecke characters, MPI Preprint No. 2006-127 (2006)Google Scholar
  4. 4.
    Borel, A.: Stable real cohomology of arithmetic groups. II Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., vol. 14, pp. 21–55. Birkhäuser, Boston (1981)Google Scholar
  5. 5.
    Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973), Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. HéraultGoogle Scholar
  6. 6.
    Borel, A., Wallach, N.R.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Mathematics Studies, vol. 94. Princeton University Press, Princeton (1980)Google Scholar
  7. 7.
    Bredon, G.E.: Sheaf theory, 2nd edn. Graduate Texts in Mathematics, vol. 170. Springer, New York (1997)Google Scholar
  8. 8.
    Casselman W. (1973). On some results of Atkin and Lehner. Math. Ann. 201: 301–314 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chellali M. (1990). Congruence entre nombres de Bernoulli–Hurwitz dans le cas supersingulier. J Number Theory 35: 157–179 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Conrad, B.: Modular forms, cohomology and the Ramanujan conjecture. ManuscriptGoogle Scholar
  11. 11.
    de Shalit, E.: Iwasawa theory of elliptic curves with complex multiplication. Perspectives in Mathematics, vol. 3. Academic, Boston (1987)Google Scholar
  12. 12.
    Dee, J.: Selmer groups of Hecke characters and Chow groups of self products of CM elliptic curves (1999, preprint). arXiv:math.NT/9901155Google Scholar
  13. 13.
    Feldhusen, D.: Nenner der Eisensteinkohomologie der GL(2) über imaginär quadratischen Zahlkörpern, Bonner Mathematische Schriften [Bonn Mathematical Publications], 330, Universität Bonn Mathematisches Institut, Bonn, 2000, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (2000)Google Scholar
  14. 14.
    Finis T. (2006). Divisibility of anticyclotomic L-functions and theta functions with complex multiplication. Ann. Math. (2) 163(3): 767–807 MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Franke J. and Schwermer J. (1998). A decomposition of spaces of automorphic forms and the Eisenstein cohomology of arithmetic groups. Math. Ann. 311: 765–790 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fröhlich A. and Queyrut J. (1973). On the functional equation of the Artin L-function for characters of real representations. Invent. Math. 20: 125–138 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fujiwara Y. (1988). On divisibilities of special values of real analytic Eisenstein series. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35: 393–410 MATHMathSciNetGoogle Scholar
  18. 18.
    Greenberg M. (1967). Lectures on Algebraic Topology. W. A. Benjamin, New York MATHGoogle Scholar
  19. 19.
    Greenberg R. (1983). On the Birch and Swinnerton-Dyer conjecture. Invent. Math. 72(2): 241–265 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Greenberg R. (1985). On the critical values of Hecke L-functions for imaginary quadratic fields. Invent. Math. 79(1): 79–94 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Harder, G.: Algebraic Geometry. Vieweg. Manuscript (to appear)Google Scholar
  22. 22.
    Harder, G.: The arithmetic properties of Eisenstein classes. Unpublished manuscriptGoogle Scholar
  23. 23.
    Harder, G.: Cohomology of arithmetic groups. ManuscriptGoogle Scholar
  24. 24.
    Harder, G.: Period integrals of cohomology classes which are represented by Eisenstein series, automorphic forms, representation theory and arithmetic (Bombay, 1979). Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., pp. 41–115. Bombay (1981)Google Scholar
  25. 25.
    Harder, G.: Period integrals of Eisenstein cohomology classes and special values of some L-functions. Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, pp. 103–142. Birkhäuser, Boston (1982)Google Scholar
  26. 26.
    Harder G. (1987). Eisenstein cohomology of arithmetic groups. The case GL2. Invent. Math. 89(1): 37–118 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Harder, G.: Eisensteinkohomologie und die Konstruktion gemischter Motive. Lecture Notes in Mathematics, vol. 1562. Springer, Berlin (1993)Google Scholar
  28. 28.
    Harder, G.: Cohomology in the language of Adeles (2006), Chap. III of [23]. Downloadable at http://www.math.uni-bonn.de/people/harder/Manuscripts/
  29. 29.
    Harder G. and Pink R. (1992). Modular konstruierte unverzweigte abelsche p-Erweiterungen von \({\bf Q}(\zeta_p)\) und die Struktur ihrer Galoisgruppen. Math. Nachr. 159: 83–99 MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Harish-Chandra: Automorphic forms on semisimple Lie groups. Notes by J. G. M. Mars. Lecture Notes in Mathematics, No. 62. Springer, Berlin (1968)Google Scholar
  31. 31.
    Hida, H.: Elementary theory of L-functions and Eisenstein series. London Mathematical Society Student Texts, vol. 26. Cambridge University Press, Cambridge (1993)Google Scholar
  32. 32.
    Hida, H.: Non-vanishing modulo p of Hecke L-values. Geometric aspects of Dwork theory, vols. I, II, pp. 735–784. Walter de Gruyter GmbH & Co. KG, Berlin (2004)Google Scholar
  33. 33.
    Hida, H.: Non-vanishing modulo p of Hecke L-values and application. Durham symposium proceedings (downloadable at http://www.math.ucla.edu/~hida) (2005, in press)
  34. 34.
    Hida H. and Tilouine J. (1994). On the anticyclotomic main conjecture for CM fields. Invent. Math. 117(1): 89–147 MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Kaiser C. (1990). Die Nenner von Eisensteinklassen für gewisse Kongruenzuntergruppen. Diplomarbeit Universität Bonn, Bonn Google Scholar
  36. 36.
    Katz N.M. (1976). p-adic interpolation of real analytic Eisenstein series. Ann. Math. (2) 104(3): 459–571 CrossRefGoogle Scholar
  37. 37.
    Katz N.M. (1977). Formal groups and p-adic interpolation. Astèrisque 41–42: 55–65 Google Scholar
  38. 38.
    Katz N.M. (1978). p-adic L-functions for CM fields. Invent. Math. 49(3): 199–297 MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Katz N.M. (1982). Divisibilities, congruences and Cartier duality. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28: 667–678 Google Scholar
  40. 40.
    König, H.: Eisenstein–Kohomologie von Sl2(Z[i]), Bonner Mathematische Schriften [Bonn Mathematical Publications], 222, Universität Bonn Mathematisches Institut, Bonn, 1991, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1991)Google Scholar
  41. 41.
    Lang, S.: Algebraic number theory, 2nd edn. Graduate Texts in Mathematics, vol. 110. Springer, New YorkGoogle Scholar
  42. 42.
    Langlands, R.P.: On the functional equations satisfied by Eisenstein series. Lecture Notes in Mathematics, vol. 544. Springer, Berlin (1976)Google Scholar
  43. 43.
    Maennel, H.: Nenner von Eisensteinklassen auf Hilbertschen Modulvarietäten und die p-adische Klassenzahlformel, Bonner Mathematische Schriften [Bonn Mathematical Publications], 247, Universität Bonn Mathematisches Institut, Bonn, 1993, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1992)Google Scholar
  44. 44.
    Mahnkopf J. (1998). Modular symbols and values of L-functions on GL3. J. Reine Angew. Math. 497: 91–112 MATHMathSciNetGoogle Scholar
  45. 45.
    Mahnkopf J. (2000). Eisenstein cohomology and the construction of p-adic analytic L-functions. Compositio Math. 124(3): 253–304 MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Ribet K.A. (1976). A modular construction of unramified p-extensions of \(Q(\mu_{p})\). Invent. Math. 34(3): 151–162 MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Rohrlich D.E. (1982). Root numbers of Hecke L-functions of CM fields. Am. J. Math. 104(3): 517–543 MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Rubin K. (1983). Congruences for special values of L-functions of elliptic curves with complex multiplication. Invent. Math. 71: 339–364 MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Rubin, K.: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Arithmetic theory of elliptic curves (Cetraro, Italy 1997). Lecture Notes in Mathematics, vol. 1716, pp. 167–234. Springer, New York (1999)Google Scholar
  50. 50.
    Schwermer, J.: Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen. Lecture Notes in Mathematics, vol. 988. Springer, Berlin (1983)Google Scholar
  51. 51.
    Skinner, C.: The Eisenstein ideal again (2002, preprint)Google Scholar
  52. 52.
    Taylor R. (1994). l-adic representations associated to modular forms over imaginary quadratic fields II. Invent. Math. 116(1–3): 619–643 MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Tilouine J. (1989). Sur la conjecture principale anticyclotomique. Duke Math. J. 59(3): 629–673 MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Urban E. (1995). Formes automorphes cuspidales pour GL2 sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences. Compositio Math. 99(3): 283–324 MATHMathSciNetGoogle Scholar
  55. 55.
    Urban E. (1988). Module de congruences pour GL(2) d’un corps imaginaire quadratique et théorie d’Iwasawa d’un corps CM biquadratique. Duke Math J. 92(1): 179–220 CrossRefMathSciNetGoogle Scholar
  56. 56.
    Waldspurger J.-L. (1985). Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compositio Math. 54(2): 173–242 MATHMathSciNetGoogle Scholar
  57. 57.
    Wang, X.D.: Die Eisensteinklasse in H 1(SL2(Z),M n(Z)) und die Arithmetik spezieller Werte von L-Funktionen, Bonner Mathematische Schriften [Bonn Mathematical Publications], 202, Universität Bonn Mathematisches Institut, Bonn, 1989, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1989)Google Scholar
  58. 58.
    Weselmann U. (1988). Eisensteinkohomologie und Dedekindsummen für GL2 über imaginär-quadratischen Zahlkörpern. J. Reine Angew. Math. 389: 90–121 MATHMathSciNetGoogle Scholar
  59. 59.
    Yang, T.: On CM abelian varieties over imaginary quadratic fields. Math. Ann. 329(1), 87–117 (2004). arXiv:math.NT/0301306Google Scholar
  60. 60.
    Zucker S. (1997). On the boundary cohomology of locally symmetric varieties. Vietnam J. Math. 25(4): 279–318 MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations